Equilibria, fixed point, computation

Equilibria, fixed point, computation

Philippe Bich, PSE and University Paris 1 Pantheon-Sorbonne, France.

0. Presentation, syllabus

- Modelization in Micro, Macro, Network theory, game theory: what are we talking about?
- A model in Economics, social science, mathematical equations describing the evolution of an economical system (with agents).
- The agent can be a homo œconomicus (neo-classical paradigm: rational agent), or not (lack of rationality: cognitive limits, prudence, altruism, cognitive bias...)
- But his behaviour is influenced by some forces (happiness, social forces, altruism, ...) which can sometimes be contradictory.
- In a model, before studying the dynamic, interesting to study the stability of the system.
- Now, Equilibria (or fixed-point) comes on the scene!

0. Presentation, syllabus

- Modelization in Micro, Macro, Network theory, game theory: what are we talking about?
- A model in Economics, social science, ...: mathematical equations describing the evolution of an economical system (with agents).
- The agent can be a homo œconomicus (neo-classical paradigm: rational agent), or not (lack of rationality: cognitive limits, prudence, altruism, cognitive bias...)
- But his behaviour is influenced by some forces (happiness, social forces, altruism, ...) which can sometimes be contradictory.
- In a model, before studying the dynamic, interesting to study the stability of the system.
- Now, Equilibria (or fixed-noint) comes on the scene!

0. Presentation, syllabus

- Modelization in Micro, Macro, Network theory, game theory: what are we talking about?
- A model in Economics, social science, ...: mathematical equations describing the evolution of an economical system (with agents).
- The agent can be a homo œconomicus (neo-classical paradigm: rational agent), or not (lack of rationality: cognitive limits, prudence, altruism, cognitive bias...)
- But his behaviour is influenced by some forces (happiness, social forces, altruism, ...) which can sometimes be contradictory.
- In a model, before studying the dynamic, interesting to study the stability of the system.
- Now, Equilibria (or fixed-point) comes on the scene!

0. Presentation, syllabus

- Modelization in Micro, Macro, Network theory, game theory: what are we talking about?
- A model in Economics, social science, ...: mathematical equations describing the evolution of an economical system (with agents).
- The agent can be a homo œconomicus (neo-classical paradigm: rational agent), or not (lack of rationality: cognitive limits, prudence, altruism, cognitive bias...)
- But his behaviour is influenced by some forces (happiness, social forces, altruism, ...) which can sometimes be contradictory.
- In a model, before studying the dynamic, interesting to study the stability of the system.
- Now, Equilibria (or fixed-point) comes on the scene.

0. Presentation, syllabus

- Modelization in Micro, Macro, Network theory, game theory: what are we talking about?
- A model in Economics, social science, ...: mathematical equations describing the evolution of an economical system (with agents).
- The agent can be a homo œconomicus (neo-classical paradigm: rational agent), or not (lack of rationality: cognitive limits, prudence, altruism, cognitive bias...)
- But his behaviour is influenced by some forces (happiness, social forces, altruism, ...) which can sometimes be contradictory.
- In a model, before studying the dynamic, interesting to study the stability of the system.
- Now, Equilibria (or fixed-point) comes on the scene!

0. Presentation, syllabus

- Modelization in Micro, Macro, Network theory, game theory: what are we talking about?
- A model in Economics, social science, ...: mathematical equations describing the evolution of an economical system (with agents).
- The agent can be a homo œconomicus (neo-classical paradigm: rational agent), or not (lack of rationality: cognitive limits, prudence, altruism, cognitive bias...)
- But his behaviour is influenced by some forces (happiness, social forces, altruism, ...) which can sometimes be contradictory.
- In a model, before studying the dynamic, interesting to study the stability of the system.
- Now, Equilibria (or fixed-point) comes on the scene!

0. Presentation, syllabus

0. Presentation, syllabus

Let us say that an equilibrium is a description of a system (through some values of some variables) which does not move despite some forces.

Example:

But in Physics, there are very stable principle (Nature minimizes energy...)
And in Economics or Social sciences ?

0. Presentation, syllabus

Let us say that an equilibrium is a description of a system (through some values of some variables) which does not move despite some forces.
Example:

But in Physics, there are very stable principle (Nature minimizes energy...)
And in Economics or Social sciences?

0. Presentation, syllabus

Let us say that an equilibrium is a description of a system (through some values of some variables) which does not move despite some forces.
Example:

But in Physics, there are very stable principle (Nature minimizes energy...)
And in Economics or Social sciences ?

0. Presentation, syllabus

Let us say that an equilibrium is a description of a system (through some values of some variables) which does not move despite some forces.
Example:

But in Physics, there are very stable principle (Nature minimizes energy...)
And in Economics or Social sciences ?

0. Presentation, syllabus

Example 1: In game theory, Nash equilibrium.

Who is Nash?

John Nash (American mathematician 1928-2015). One of the greatest genius of mathematics according to some mathematicians.
Won Nobel prize in Economics and Abel medal (like Nobel prize in mathematics).
Was ill (schizophrenia ?) during 25 years, then he recovered! recently killed with his wife in a car crash.
See the film "A Beautiful Mind" by Ron Howard (Russel Crowe is Nash).

Who is Nash?

John Nash (American mathematician 1928-2015). One of the greatest genius of mathematics according to some mathematicians.
Won Nobel prize in Economics and Abel medal (like Nobel prize in mathematics).
Was ill (schizophrenia ?) during 25 years, then he recovered! recently killed with his wife in a car crash.
See the film "A Beautiful Mind" by Ron Howard (Russel Crowe is Nash)

Who is Nash?

John Nash (American mathematician 1928-2015). One of the greatest genius of mathematics according to some mathematicians.
Won Nobel prize in Economics and Abel medal (like Nobel prize in mathematics).
Was ill (schizophrenia ?) during 25 years, then he recovered!
recently killed with his wife in a car crash.
See the film "A Beautiful Mind" by Ron Howard (Russel Crowe is
Nash)

Who is Nash?

John Nash (American mathematician 1928-2015). One of the greatest genius of mathematics according to some mathematicians.
Won Nobel prize in Economics and Abel medal (like Nobel prize in mathematics).
Was ill (schizophrenia ?) during 25 years, then he recovered!
recently killed with his wife in a car crash.
See the film "A Beautiful Mind" by Ron Howard (Russel Crowe is
Nash)

Who is Nash?

John Nash (American mathematician 1928-2015).
One of the greatest genius of mathematics according to some mathematicians.
Won Nobel prize in Economics and Abel medal (like Nobel prize in mathematics).
Was ill (schizophrenia ?) during 25 years, then he recovered! recently killed with his wife in a car crash.
See the film "A Beautiful Mind" by Ron Howard (Russel Crowe is
Nash).

Who is Nash?

John Nash (American mathematician 1928-2015).
One of the greatest genius of mathematics according to some mathematicians.
Won Nobel prize in Economics and Abel medal (like Nobel prize in mathematics).
Was ill (schizophrenia ?) during 25 years, then he recovered! recently killed with his wife in a car crash.
See the film "A Beautiful Mind" by Ron Howard (Russel Crowe is Nash).

0. Presentation, syllabus

Example 1: In game theory, Nash equilibrium.
Motivation: predict behaviour of agents that interact strategically.

0. Presentation, syllabus

Example 1: In game theory, Nash equilibrium.
Motivation: predict behaviour of agents that interact strategically.

0. Presentation, syllabus

Example 2: Auctions (particular example of games, but in general discontinuous!).

0. Presentation, syllabus

Example 2: Auctions (particular example of games, but in general discontinuous!).

- In general, existence of a Nash equilibrium requires continuity of the payoffs (We will see Nash-Glicksberg Theorem).
- This is a strong assumption! in practice false (Hotelling, Bertrand, Cournot, ...)
- What can be done then in terms of existence, computation, ...of an equilibrium?

0. Presentation, syllabus

Example 2: Auctions (particular example of games, but in general discontinuous!).

- In general, existence of a Nash equilibrium requires continuity of the payoffs (We will see Nash-Glicksberg Theorem).
- This is a strong assumption! in practice false (Hotelling, Bertrand, Cournot, ...)
- What can be done then in terms of existence, computation, ...of an equilibrium?

0. Presentation, syllabus

Example 2: Auctions (particular example of games, but in general discontinuous!).

- In general, existence of a Nash equilibrium requires continuity of the payoffs (We will see Nash-Glicksberg Theorem).
- This is a strong assumption! in practice false (Hotelling, Bertrand, Cournot, ...)
- What can be done then in terms of existence, computation, ...of an equilibrium ?

0. Presentation, syllabus

Example 3: Networks.

Philippe Bich

0. Presentation, syllabus

Example 3: Networks.

- Theory of network is growing very fast since 20 years.
- kind of problems: in Economics, understanding the form of network (organizations, nation states, web sites, scholarly publications,...)
- example: see social networks.
- Existence of Pairwise stability network comes from the existence of Kakutani's theorem.

0. Presentation, syllabus

Example 3: Networks.

- Theory of network is growing very fast since 20 years.
- kind of problems: in Economics, understanding the form of network (organizations, nation states, web sites, scholarly publications,...)
- example: see social networks.
- Existence of Pairwise stability network comes from the existence of Kakutani's theorem.

0. Presentation, syllabus

Example 3: Networks.

- Theory of network is growing very fast since 20 years.
- kind of problems: in Economics, understanding the form of network (organizations, nation states, web sites, scholarly publications,...)
- example: see social networks.
- Existence of Pairwise stability network comes from the existence of Kakutani's theorem.

0. Presentation, syllabus

Example 3: Networks.

- Theory of network is growing very fast since 20 years.
- kind of problems: in Economics, understanding the form of network (organizations, nation states, web sites, scholarly publications,...)
- example: see social networks.
- Existence of Pairwise stability network comes from the existence of Kakutani's theorem.

0. Presentation, syllabus

Example 4: Price formation

- Abstract formalization of an exchange economy through an excess demand.
- An excess demand function is is the difference between supply and demand in good I.
- Question: existence of a zero ? comes from Brouwer's theorem
- And for computation (and proof ?): Sperner Lemma

0. Presentation, syllabus

Example 4: Price formation

- Abstract formalization of an exchange economy through an excess demand.
- An excess demand function is is the difference between supply and demand in good I.
- Question: existence of a zero ? comes from Brouwer's theorem
- And for computation (and proof ?): Sperner Lemma

0. Presentation, syllabus

Example 4: Price formation

- Abstract formalization of an exchange economy through an excess demand.
- An excess demand function is is the difference between supply and demand in good I.
- Question: existence of a zero ? comes from Brouwer's theorem
- And for computation (and proof ?): Sperner Lemma

0. Presentation, syllabus

Example 4: Price formation

- Abstract formalization of an exchange economy through an excess demand.
- An excess demand function is is the difference between supply and demand in good I.
- Question: existence of a zero ? comes from Brouwer's theorem
- And for computation (and proof ?): Sperner Lemma

0. Presentation, syllabus

Example 5: Extensive form game. Ultimatum game

Idea of subgame perfect equilibrium (improvement of Nash equilibrium)

0. Presentation, syllabus

Example 5: Extensive form game.

- What about if strategy spaces are not finite.
- Assume for example each strategy space is $[0,1]$ each time, and each player plays one after the other.
- Assume the payoffs are continuous with respect to the path which is played.
- Is there a subgame perfect equilibrium ? method?

0. Presentation, syllabus

Example 5: Extensive form game.

- What about if strategy spaces are not finite.
- Assume for example each strategy space is $[0,1]$ each time, and each player plays one after the other.
- Assume the payoffs are continuous with respect to the path which is played.
- Is there a subgame perfect equilibrium ? method?

0. Presentation, syllabus

Example 5: Extensive form game.

- What about if strategy spaces are not finite.
- Assume for example each strategy space is $[0,1]$ each time, and each player plays one after the other.
- Assume the payoffs are continuous with respect to the path which is played.
- Is there a subgame perfect equilibrium ? method?

0. Presentation, syllabus

Example 5: Extensive form game.

- What about if strategy spaces are not finite.
- Assume for example each strategy space is $[0,1]$ each time, and each player plays one after the other.
- Assume the payoffs are continuous with respect to the path which is played.
- Is there a subgame perfect equilibrium ? method ?

0. Presentation, syllabus

- Beyond question of existence: uniqueness of equilibrium, or number of equilibria, or the structure of equilibrium set.
- Beyond technical questions: how to write a model for which something can be said?
- Other question: which behaviour induces stability ?
- Beyond the course: question of dynamic (how converging to an equilibrium). Generally, open question (see Smale).

0. Presentation, syllabus

- Beyond question of existence: uniqueness of equilibrium, or number of equilibria, or the structure of equilibrium set.
- Beyond technical questions: how to write a model for which something can be said?
- Other question: which behaviour induces stability ?
- Beyond the course: question of dynamic (how converging to an equilibrium). Generally, open question (see Smale),

0. Presentation, syllabus

- Beyond question of existence: uniqueness of equilibrium, or number of equilibria, or the structure of equilibrium set.
- Beyond technical questions: how to write a model for which something can be said?
- Other question: which behaviour induces stability ?
- Beyond the course: question of dynamic (how converging to an equilibrium). Generally, open question (see Smale).

0. Presentation, syllabus

- Beyond question of existence: uniqueness of equilibrium, or number of equilibria, or the structure of equilibrium set.
- Beyond technical questions: how to write a model for which something can be said?
- Other question: which behaviour induces stability ?
- Beyond the course: question of dynamic (how converging to an equilibrium). Generally, open question (see Smale).

Syllabus

- 9*2 Hours
- Grade=an exam (approx 17 points)+a participation grade (approx 3 points)+potentially 2 additional points
- The exam=exercise or Questions related closely to the Lectures.
- Participation grade=attendance+small exams at the beginning of some lectures (additional points)+small oral presentation during the lectures.
- Typically, a student that makes a good oral presentation during a lecture, which attends the class, and which makes good small exams during the lectures will get 5 points, to be added to his final grade on 17.

Syllabus

- 9*2 Hours
- Grade=an exam (approx 17 points)+a participation grade (approx 3 points)+potentially 2 additional points
- The exam=exercise or Questions related closely to the Lectures.
- Participation grade=attendance+small exams at the beginning of some lectures (additional points)+small oral presentation during the lectures.
- Typically, a student that makes a good oral presentation during a lecture, which attends the class, and which makes good small exams during the lectures will get 5 points, to be added to his final grade on 17.

Syllabus

- 9*2 Hours
- Grade=an exam (approx 17 points)+a participation grade (approx 3 points)+potentially 2 additional points
- The exam=exercise or Questions related closely to the Lectures.
- Participation grade=attendance+small exams at the beginning of some lectures (additional points)+small oral presentation during the lectures.
- Typically, a student that makes a good oral presentation during a lecture, which attends the class, and which makes good small exams during the lectures will get 5 points, to be added to his final grade on 17.

Syllabus

- 9*2 Hours
- Grade=an exam (approx 17 points)+a participation grade (approx 3 points)+potentially 2 additional points
- The exam=exercise or Questions related closely to the Lectures.
- Participation grade=attendance+small exams at the beginning of some lectures (additional points)+small oral presentation during the lectures.
- Typically, a student that makes a good oral presentation during a lecture, which attends the class, and which makes good small exams during the lectures will get 5 points, to be added to his final grade on 17.

Syllabus

- Course 1: Fixed-point property, Brouwer theorem.
- Course 2: Sperner Lemma, Proof of Brouwer theorem.
- Course 3: Topological degree, other proof of Brouwer, zero of inward continuous vector fields.
- Course 4: Correspondences, Kakutani's theorem.
- Course 5: Maximal element, basic existence theorem of a maximal element.
- Course 6: Infinite dimensional case of Brouwer: Schauder fixed-point theorem.
- Course 7: Banach fixed-point theorem, Blackwell fixed-point theorem, application to Bellman equation.
- Course 8: Order theoretic fixed point theorem: Tarski's theorem.
- Course 9: Some applications (given depending time) : Game theory, networks,

Syllabus

- Course 1: Fixed-point property, Brouwer theorem.
- Course 2: Sperner Lemma, Proof of Brouwer theorem.
- Course 3: Topological degree, other proof of Brouwer, zero of inward continuous vector fields.
- Course 4: Correspondences, Kakutani's theorem.
- Course 5: Maximal element, basic existence theorem of a maximal element.
- Course 6: Infinite dimensional case of Brouwer: Schauder fixed-point theorem.
- Course 7: Banach fixed-point theorem, Blackwell fixed-point theorem, application to Bellman equation.
- Course 8: Order theoretic fixed point theorem: Tarski's theorem.
- Course 9: Some applications (given depending time) : Game theory, networks,

Syllabus

- Course 1: Fixed-point property, Brouwer theorem.
- Course 2: Sperner Lemma, Proof of Brouwer theorem.
- Course 3: Topological degree, other proof of Brouwer, zero of inward continuous vector fields.
- Course 4: Correspondences, Kakutani's theorem.
- Course 5: Maximal element, basic existence theorem of a maximal element.
- Course 6: Infinite dimensional case of Brouwer: Schauder fixed-point theorem.
- Course 7: Banach fixed-point theorem, Blackwell fixed-point theorem, application to Bellman equation.
- Course 8: Order theoretic fixed point theorem: Tarski's theorem.
- Course 9: Some applications (given depending time) : Game theory, networks,

Syllabus

- Course 1: Fixed-point property, Brouwer theorem.
- Course 2: Sperner Lemma, Proof of Brouwer theorem.
- Course 3: Topological degree, other proof of Brouwer, zero of inward continuous vector fields.
- Course 4: Correspondences, Kakutani's theorem.
- Course 5: Maximal element, basic existence theorem of a maximal element.
- Course 6: Infinite dimensional case of Brouwer: Schauder fixed-point theorem.
- Course 7: Banach fixed-point theorem, Blackwell fixed-point theorem, application to Bellman equation.
- Course 8: Order theoretic fixed point theorem: Tarski's theorem.
- Course 9: Some applications (given depending time) : Game theory, networks,

Syllabus

- Course 1: Fixed-point property, Brouwer theorem.
- Course 2: Sperner Lemma, Proof of Brouwer theorem.
- Course 3: Topological degree, other proof of Brouwer, zero of inward continuous vector fields.
- Course 4: Correspondences, Kakutani's theorem.
- Course 5: Maximal element, basic existence theorem of a maximal element.
- Course 6: Infinite dimensional case of Brouwer: Schauder fixed-point theorem.
- Course 7: Banach fixed-point theorem, Blackwell fixed-point theorem, application to Bellman equation.
- Course 8: Order theoretic fixed point theorem: Tarski's theorem.
- Course 9: Some applications (given depending time) : Game theory, networks,

Syllabus

- Course 1: Fixed-point property, Brouwer theorem.
- Course 2: Sperner Lemma, Proof of Brouwer theorem.
- Course 3: Topological degree, other proof of Brouwer, zero of inward continuous vector fields.
- Course 4: Correspondences, Kakutani's theorem.
- Course 5: Maximal element, basic existence theorem of a maximal element.
- Course 6: Infinite dimensional case of Brouwer: Schauder fixed-point theorem.
- Course 7: Banach fixed-point theorem, Blackwell fixed-point theorem, application to Bellman equation.
- Course 8: Order theoretic fixed noint theorem: Tarski's theorem.
- Course 9: Some applications (given depending time) : Game theory, networks,

Syllabus

- Course 1: Fixed-point property, Brouwer theorem.
- Course 2: Sperner Lemma, Proof of Brouwer theorem.
- Course 3: Topological degree, other proof of Brouwer, zero of inward continuous vector fields.
- Course 4: Correspondences, Kakutani's theorem.
- Course 5: Maximal element, basic existence theorem of a maximal element.
- Course 6: Infinite dimensional case of Brouwer: Schauder fixed-point theorem.
- Course 7: Banach fixed-point theorem, Blackwell fixed-point theorem, application to Bellman equation.
- Course 8: Order theoretic fixed point theorem: Tarski's theorem.
- Course 9: Some applications (given depending time) : Game theory, networks,

Syllabus

- Course 1: Fixed-point property, Brouwer theorem.
- Course 2: Sperner Lemma, Proof of Brouwer theorem.
- Course 3: Topological degree, other proof of Brouwer, zero of inward continuous vector fields.
- Course 4: Correspondences, Kakutani's theorem.
- Course 5: Maximal element, basic existence theorem of a maximal element.
- Course 6: Infinite dimensional case of Brouwer: Schauder fixed-point theorem.
- Course 7: Banach fixed-point theorem, Blackwell fixed-point theorem, application to Bellman equation.
- Course 8: Order theoretic fixed point theorem: Tarski's theorem.
- Course 9: Some applications (given depending time) : Game theory, networks,

Syllabus

- Course 1: Fixed-point property, Brouwer theorem.
- Course 2: Sperner Lemma, Proof of Brouwer theorem.
- Course 3: Topological degree, other proof of Brouwer, zero of inward continuous vector fields.
- Course 4: Correspondences, Kakutani's theorem.
- Course 5: Maximal element, basic existence theorem of a maximal element.
- Course 6: Infinite dimensional case of Brouwer: Schauder fixed-point theorem.
- Course 7: Banach fixed-point theorem, Blackwell fixed-point theorem, application to Bellman equation.
- Course 8: Order theoretic fixed point theorem: Tarski's theorem.
- Course 9: Some applications (given depending time) : Game theory, networks, ...

Syllabus

- Course 1: Fixed-point property, Brouwer theorem.
- Course 2: Sperner Lemma, Proof of Brouwer theorem.
- Course 3: Topological degree, other proof of Brouwer, zero of inward continuous vector fields.
- Course 4: Correspondences, Kakutani's theorem.
- Course 5: Maximal element, basic existence theorem of a maximal element.
- Course 6: Infinite dimensional case of Brouwer: Schauder fixed-point theorem.
- Course 7: Banach fixed-point theorem, Blackwell fixed-point theorem, application to Bellman equation.
- Course 8: Order theoretic fixed point theorem: Tarski's theorem.
- Course 9: Some applications (given depending time) : Game theory, networks, ...

1. The Fixed-point property A) Reminders

The concept of Continuity, compactness and convexity plays a very important role in this course.

> Continuity of a function can be written using balls (closed or open), and the definition of balls uses the definition of metric spaces.

Definition:metric spaces

A metric space (E, d) is a set E together with a function $E \times E \rightarrow[0,+\infty[$, called a distance (or a metric) and satisfying:

- For every $(x, y) \in E \times E, d(x, y)=0$ if and only if $x=y$;
- For every $(x, y) \in E \times E, d(x, y)=d(y, x)$;
- For every $(x, y, z) \in E \times E \times E, d(x, y) \leq d(x, z)+d(z, y)$;

1. The Fixed-point property A) Reminders

The concept of Continuity, compactness and convexity plays a very important role in this course.
Continuity of a function can be written using balls (closed or open), and the definition of balls uses the definition of metric spaces.

1. The Fixed-point property A) Reminders

The concept of Continuity, compactness and convexity plays a very important role in this course.
Continuity of a function can be written using balls (closed or open), and the definition of balls uses the definition of metric spaces.

Definition: metric spaces

A metric space (E, d) is a set E together with a function $d: E \times E \rightarrow[0,+\infty[$, called a distance (or a metric) and satisfying:

1. The Fixed-point property A) Reminders

The concept of Continuity, compactness and convexity plays a very important role in this course.
Continuity of a function can be written using balls (closed or open), and the definition of balls uses the definition of metric spaces.

Definition: metric spaces

A metric space (E, d) is a set E together with a function $d: E \times E \rightarrow[0,+\infty[$, called a distance (or a metric) and satisfying:

- For every $(x, y) \in E \times E, d(x, y)=0$ if and only if $x=y$;

1. The Fixed-point property A) Reminders

The concept of Continuity, compactness and convexity plays a very important role in this course.
Continuity of a function can be written using balls (closed or open), and the definition of balls uses the definition of metric spaces.

Definition: metric spaces

A metric space (E, d) is a set E together with a function $d: E \times E \rightarrow[0,+\infty[$, called a distance (or a metric) and satisfying:

- For every $(x, y) \in E \times E, d(x, y)=0$ if and only if $x=y$;
- For every $(x, y) \in E \times E, d(x, y)=d(y, x)$;

1. The Fixed-point property A) Reminders

The concept of Continuity, compactness and convexity plays a very important role in this course.
Continuity of a function can be written using balls (closed or open), and the definition of balls uses the definition of metric spaces.

Definition: metric spaces

A metric space (E, d) is a set E together with a function $d: E \times E \rightarrow[0,+\infty[$, called a distance (or a metric) and satisfying:

- For every $(x, y) \in E \times E, d(x, y)=0$ if and only if $x=y$;
- For every $(x, y) \in E \times E, d(x, y)=d(y, x)$;
- For every $(x, y, z) \in E \times E \times E, d(x, y) \leq d(x, z)+d(z, y)$;

1. The Fixed-point property A) Reminders

In many cases, it is possible to measure distances using the stronger concept of norm:

Norm ||.|| on E, a vector spaces R-e.v.:

- \|.\| mapping from E to \mathbb{R}^{+};
- For every $x \in E,\|x\|=0$ if and only if $x=0$;
- For every $x \in E$, For every
- For every $(x, y) \in E$
$E,\|x+y\| \leq\|x\|+\|y\|$

1. The Fixed-point property A) Reminders

In many cases, it is possible to measure distances using the stronger concept of norm:

Norm ||.|| on E, a vector spaces R-e.v.:

- $\|$.$\| mapping from E$ to \mathbb{R}^{+};
- For every $x \in E,\|x\|=0$ if and only if $x=0$;
- For every $x \in E$, For every $t \in \mathbb{R}$
- For every $(x, y) \in E$
$E,\|x+y\| \leq\|x\|+\|y\|$

1. The Fixed-point property A) Reminders

In many cases, it is possible to measure distances using the stronger concept of norm:

Norm ||.|| on E, a vector spaces R-e.v.:

- $\|$.$\| mapping from E$ to \mathbb{R}^{+};
- For every $x \in E,\|x\|=0$ if and only if $x=0$;
- For every $x \in E$, For every $t \in \mathbb{R},\|t x\|=|t|\|x\|$;
- For every $(x, y) \in E$

1. The Fixed-point property A) Reminders

In many cases, it is possible to measure distances using the stronger concept of norm:

Norm ||.|| on E, a vector spaces R-e.v.:

- $\|$.$\| mapping from E$ to \mathbb{R}^{+};
- For every $x \in E,\|x\|=0$ if and only if $x=0$;
- For every $x \in E$, For every $t \in \mathbb{R},\|t x\|=|t|\|x\|$;
- For every $(x, y) \in E \times E,\|x+y\| \leq\|x\|+\|y\|$.

1. The Fixed-point property A) Reminders

In many cases, it is possible to measure distances using the stronger concept of norm:

Norm ||.|| on E, a vector spaces R-e.v.:

- $\|$.$\| mapping from E$ to \mathbb{R}^{+};
- For every $x \in E,\|x\|=0$ if and only if $x=0$;
- For every $x \in E$, For every $t \in \mathbb{R},\|t x\|=|t|\|x\|$;
- For every $(x, y) \in E \times E,\|x+y\| \leq\|x\|+\|y\|$.

1. The Fixed-point property A) Reminders

Proposition
If $(E,\|\cdot\|)$ is a norm space, then if we define $d(x, y)=\|x-y\|$ for every $(x, y) \in E \times E$, then (E, d) is a metric space.

1. The Fixed-point property A) Reminders

- Example 0: discrete distance.
- Example 1: distance in a graph.
- Example 2: d_{1}, d_{2}, d_{∞} in $\mathbf{R}^{n},\|\cdot\|_{1},\|\cdot\|_{2},\|\cdot\|_{\infty}$ in \mathbf{R}^{n}, or in space of real sequences.
- Example 3: d_{∞} or $\|\cdot\|_{\infty}$ on $\mathcal{B}(X, \mathbf{R})$, the set of bounded functions from X to \mathbf{R}.

1. The Fixed-point property A) Reminders

- Example 0: discrete distance.
- Example 1: distance in a graph.
- Example 2: d_{1}, d_{2}, d_{∞} in $\mathbf{R}^{n},\|.\|_{1},\|\cdot\|_{2},\|.\|_{\infty}$ in \mathbf{R}^{n}, or in space of real sequences.
- Example 3: d_{∞} or $\|.\|_{\infty}$ on $\mathcal{B}(X, R)$, the set of bounded functions from X to R.

1. The Fixed-point property A) Reminders

- Example 0: discrete distance.
- Example 1: distance in a graph.
- Example 2: d_{1}, d_{2}, d_{∞} in $\mathbf{R}^{n},\|\cdot\|_{1},\|\cdot\|_{2},\|\cdot\|_{\infty}$ in \mathbf{R}^{n}, or in space of real sequences.
- Example 3: d_{∞} or $\|.\|_{\infty}$ on $\mathcal{B}(X, \mathbf{R})$, the set of bounded functions from X to \mathbf{R}.

1. The Fixed-point property A) Reminders

- Example 0: discrete distance.
- Example 1: distance in a graph.
- Example 2: d_{1}, d_{2}, d_{∞} in $\mathbf{R}^{n},\|\cdot\|_{1},\|\cdot\|_{2},\|\cdot\|_{\infty}$ in \mathbf{R}^{n}, or in space of real sequences.
- Example 3: d_{∞} or $\|\cdot\|_{\infty}$ on $\mathcal{B}(X, \mathbf{R})$, the set of bounded functions from X to \mathbf{R}.

1. The Fixed-point property A) Reminders

(Definition of Continuity of $f: X \rightarrow Y$ with balls):
Let (X, d) and (Y, δ) two metric spaces. Then
A function $f: X \rightarrow Y$ is continuous if and only if:
(Equivalent Definition of Continuity of $f: X \rightarrow Y$ with sequences):
Let (X, d) and (Y, δ) two metric spaces. Then
A function $f: X \rightarrow Y$ is continuous if and only if:

1. The Fixed-point property A) Reminders

(Definition of Continuity of $f: X \rightarrow Y$ with balls):
Let (X, d) and (Y, δ) two metric spaces. Then
A function $f: X \rightarrow Y$ is continuous if and only if:
(Equivalent Definition of Continuity of $f: X \rightarrow Y$ with sequences):
Let (X, d) and (Y, δ) two metric spaces. Then
A function $f: X \rightarrow Y$ is continuous if and only if:

1. The Fixed-point property A) Reminders

(Definition of Continuity of $f: X \rightarrow Y$ with balls):
Let (X, d) and (Y, δ) two metric spaces. Then
A function $f: X \rightarrow Y$ is continuous if and only if:
(Equivalent Definition of Continuity of $f: X \rightarrow Y$ with sequences)
Let (X, d) and (Y, δ) two metric spaces. Then
A function $f: X \rightarrow Y$ is continuous if and only if:

1. The Fixed-point property A) Reminders

(Definition of Continuity of $f: X \rightarrow Y$ with balls):

Let (X, d) and (Y, δ) two metric spaces. Then
A function $f: X \rightarrow Y$ is continuous if and only if:
(Equivalent Definition of Continuity of $f: X \rightarrow Y$ with sequences):
Let (X, d) and (Y, δ) two metric spaces. Then
A function $f: X \rightarrow Y$ is continuous if and only if:

1. The Fixed-point property A) Reminders

(Definition of Continuity of $f: X \rightarrow Y$ with balls):

Let (X, d) and (Y, δ) two metric spaces. Then A function $f: X \rightarrow Y$ is continuous if and only if:
(Equivalent Definition of Continuity of $f: X \rightarrow Y$ with sequences):
Let (X, d) and (Y, δ) two metric spaces. Then

1. The Fixed-point property A) Reminders

(Definition of Continuity of $f: X \rightarrow Y$ with balls):

Let (X, d) and (Y, δ) two metric spaces. Then A function $f: X \rightarrow Y$ is continuous if and only if:

(Equivalent Definition of Continuity of $f: X \rightarrow Y$ with sequences):

Let (X, d) and (Y, δ) two metric spaces. Then A function $f: X \rightarrow Y$ is continuous if and only if:

1. The Fixed-point property A) Reminders

(Definition of closed end open subsets):
Let (X, d) a metric space. Then a susbspace $A \subset X$ is closed if.... Let (X, d) a metric space. Then a susbspace $A \subset X$ is open if....

1. The Fixed-point property A) Reminders

(Definition of closed end open subsets):
Let (X, d) a metric space. Then a susbspace $A \subset X$ is closed if....

1. The Fixed-point property A) Reminders

(Definition of closed end open subsets):

Let (X, d) a metric space. Then a susbspace $A \subset X$ is closed if.... Let (X, d) a metric space. Then a susbspace $A \subset X$ is open if....

1. The Fixed-point property A) Reminders

Definition of compact subsets:
Let (E, d) a metric set. A subset $K \subset E$ is compact in E if for every familly $\left(U_{i}\right)_{i \in I}$ of open covering of K (i.e. $K \subset \cup_{i \in I} U_{i}$) if there is a finite subcovering (i.e. there is $J \subset I, J$ finite, such that $K \subset \cup_{i \in J} U_{i}$).

$$
\begin{aligned}
& \text { Equivalent Definition of compact subsets: } \\
& \text { Let }(E, d) \text { a metric set. A subset } K \subset E \text { is compact in } E \text { if and only } \\
& \text { if: for every sequence }\left(x_{n}\right) \text { of } K \text {, there exists a subsequence }\left(x_{\phi(n)}\right) \\
& \text { which converges in } K \text {. }
\end{aligned}
$$

1. The Fixed-point property A) Reminders

Definition of compact subsets:

Let (E, d) a metric set. A subset $K \subset E$ is compact in E if for every familly $\left(U_{i}\right)_{i \in I}$ of open covering of K (i.e. $K \subset \cup_{i \in I} U_{i}$) if there is a finite subcovering (i.e. there is $J \subset I, J$ finite, such that $K \subset \cup_{i \in J} U_{i}$).

Equivalent Definition of compact subsets:
Let (E, d) a metric set. A subset $K \subset E$ is compact in E if and only if: for every sequence (x_{n}) of K, there exists a subsequence $\left(x_{\phi(n)}\right)$ which converges in K.

1. The Fixed-point property B) The fixed point property

Definition:

A metric space (X, d) has the fixed point property if: for every continuous function $f: X \rightarrow X$, there exists a fixed point $x \in X$ of X (which means $f(x)=x$).

Questions

$[0,1]$ has the FPP ?
\mathbf{R} has the FPP ?
$[0,1] \cup[2,3]$ has the FPP ?
[0, 1 [has the FPP ?
A circle in \mathbf{R}^{2} has the FPP?
A half-circle R^{2} has the FPP ?

1. The Fixed-point property B) The fixed point property

Definition:

A metric space (X, d) has the fixed point property if: for every continuous function $f: X \rightarrow X$, there exists a fixed point $x \in X$ of X (which means $f(x)=x$).

Questions

$[0,1]$ has the FPP ?
\mathbf{R} has the FPP ?
$[0,1] \cup[2,3]$ has the FPP ?
[0, 1 [has the FPP ?
A circle in \mathbf{R}^{2} has the FPP ?
A half-circle \mathbf{R}^{2} has the FPP ?

1. The Fixed-point property B) The fixed point property

Definition:

A metric space (X, d) has the fixed point property if: for every continuous function $f: X \rightarrow X$, there exists a fixed point $x \in X$ of X (which means $f(x)=x$).

Questions

$[0,1]$ has the FPP ?

1. The Fixed-point property B) The fixed point property

Definition:

A metric space (X, d) has the fixed point property if: for every continuous function $f: X \rightarrow X$, there exists a fixed point $x \in X$ of X (which means $f(x)=x$).

Questions

$[0,1]$ has the FPP ?
\mathbf{R} has the FPP ?
$[0,1] \cup[2,3]$ has the FPP ?
[0, 1 [has the FPP ?
A circle in \mathbf{R}^{2} has the FPP ?
A half-circle R^{2} has the FPP ?

1. The Fixed-point property B) The fixed point property

Definition:

A metric space (X, d) has the fixed point property if: for every continuous function $f: X \rightarrow X$, there exists a fixed point $x \in X$ of X (which means $f(x)=x$).

Questions

[0, 1] has the FPP ?
\mathbf{R} has the FPP ?
$[0,1] \cup[2,3]$ has the FPP ?

A circle in \mathbf{R}^{2} has the FPP ?
A half-circle \mathbf{R}^{2} has the FPP ?

1. The Fixed-point property B) The fixed point property

Definition:

A metric space (X, d) has the fixed point property if: for every continuous function $f: X \rightarrow X$, there exists a fixed point $x \in X$ of X (which means $f(x)=x$).

Questions

[0, 1] has the FPP ?
\mathbf{R} has the FPP ?
$[0,1] \cup[2,3]$ has the FPP ?
[0, 1 [has the FPP ?

1. The Fixed-point property B) The fixed point property

Definition:

A metric space (X, d) has the fixed point property if: for every continuous function $f: X \rightarrow X$, there exists a fixed point $x \in X$ of X (which means $f(x)=x$).

Questions

[0, 1] has the FPP ?
\mathbf{R} has the FPP ?
$[0,1] \cup[2,3]$ has the FPP ?
[0, 1 [has the FPP ?
A circle in \mathbf{R}^{2} has the FPP ?

1. The Fixed-point property B) The fixed point property

Definition:

A metric space (X, d) has the fixed point property if: for every continuous function $f: X \rightarrow X$, there exists a fixed point $x \in X$ of X (which means $f(x)=x$).

Questions

$[0,1]$ has the FPP ?
\mathbf{R} has the FPP ?
$[0,1] \cup[2,3]$ has the FPP ?
[0, 1 [has the FPP ?
A circle in \mathbf{R}^{2} has the FPP ?
A half-circle \mathbf{R}^{2} has the FPP ?

2. The Fixed-point property is preserved by homeomorphism

Definition:

Let (X, d) and (Y, δ) two metric spaces. A homeomorphism of X from Y if a function $f: X \rightarrow Y$ which is continuous, bijective, and such that $f^{-1}: Y \rightarrow X$ is continuous.

Theorem

Let (X, d) and (Y, δ) two metric spaces such that (X, d) has the Fixed Point property. If f is a a homeomorphism of X from Y then Y has the fixed point property.

2. The Fixed-point property is preserved by homeomorphism

Definition:

Let (X, d) and (Y, δ) two metric spaces. A homeomorphism of X from Y if a function $f: X \rightarrow Y$ which is continuous, bijective, and such that $f^{-1}: Y \rightarrow X$ is continuous.

```
Theorem
Let }(X,d)\mathrm{ and ( }Y,\delta)\mathrm{ two metric spaces such that (X,d) has the
Fixed Point property. If f}\mathrm{ is a a homeomorphism of }X\mathrm{ from }Y\mathrm{ then }
has the fixed point property.
```


2. The Fixed-point property is preserved by homeomorphism

Definition:

Let (X, d) and (Y, δ) two metric spaces. A homeomorphism of X from Y if a function $f: X \rightarrow Y$ which is continuous, bijective, and such that $f^{-1}: Y \rightarrow X$ is continuous.

Theorem

2. The Fixed-point property is preserved by homeomorphism

Definition:

Let (X, d) and (Y, δ) two metric spaces. A homeomorphism of X from Y if a function $f: X \rightarrow Y$ which is continuous, bijective, and such that $f^{-1}: Y \rightarrow X$ is continuous.

Theorem

Let (X, d) and (Y, δ) two metric spaces such that (X, d) has the Fixed Point property. If f is a a homeomorphism of X from Y then Y has the fixed point property.

2. The Fixed-point property is preserved by homeomorphism

Definition:

Let (X, d) and (Y, δ) two metric spaces. A homeomorphism of X from Y if a function $f: X \rightarrow Y$ which is continuous, bijective, and such that $f^{-1}: Y \rightarrow X$ is continuous.

Theorem

Let (X, d) and (Y, δ) two metric spaces such that (X, d) has the Fixed Point property. If f is a a homeomorphism of X from Y then Y has the fixed point property.

3. The Fixed-point property and continuous retraction

Definition:

Let (X, d) a metric space and A a subspace of X. A continuous retraction from X to A is a continuous function $f: X \rightarrow A$ such that the restriction of f to A is the identity of A.

> Theorem
> Let (X, d) a metric space and A a subspace of X. If there exists f a continuous retraction from X to A and if (X, d) has the Fixed Point property, then (A, d) has the fixed point property.

3. The Fixed-point property and continuous retraction

Definition:

Let (X, d) a metric space and A a subspace of X. A continuous retraction from X to A is a continuous function $f: X \rightarrow A$ such that the restriction of f to A is the identity of A.

Theorem

Let (X, d) a metric space and A a subspace of X. If there exists f a continuous retraction from X to A and if (X, d) has the Fixed Point property, then (A, d) has the fixed point property.

3. The Fixed-point property and continuous retraction

Definition:

Let (X, d) a metric space and A a subspace of X. A continuous retraction from X to A is a continuous function $f: X \rightarrow A$ such that the restriction of f to A is the identity of A.

Theorem

Let (X, d) a metric space and A a subspace of X. If there exists f a continuous retraction from X to A and if (X, d) has the Fixed Point property, then (A, d) has the fixed point property.

4. Convex compact subset in \mathbf{R}^{n} have the Fixed-point property

Theorem (Brouwer theorem)

Convex compact subset in \mathbf{R}^{n} have the Fixed-point property

