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0. Presentation, syllabus

Modelization in Micro, Macro, Network theory, game theory:
what are we talking about ?
A model in Economics, social science, ...: mathematical
equations describing the evolution of an economical system
(with agents).
The agent can be a homo œconomicus (neo-classical
paradigm: rational agent), or not (lack of rationality: cognitive
limits, prudence, altruism, cognitive bias...)
But his behaviour is influenced by some forces (happiness,
social forces, altruism, ...) which can sometimes be
contradictory.
In a model, before studying the dynamic, interesting to study
the stability of the system.
Now, Equilibria (or fixed-point) comes on the scene!
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Let us say that an equilibrium is a description of a system (through
some values of some variables) which does not move despite some
forces.
Example:

But in Physics, there are very stable principle (Nature minimizes
energy...)
And in Economics or Social sciences ?
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Example 1: In game theory, Nash equilibrium.
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Who is Nash ?

John Nash (American mathematician 1928-2015).
One of the greatest genius of mathematics according to some
mathematicians.
Won Nobel prize in Economics and Abel medal (like Nobel prize in
mathematics).
Was ill (schizophrenia ?) during 25 years, then he recovered!
recently killed with his wife in a car crash.
See the film "A Beautiful Mind" by Ron Howard (Russel Crowe is
Nash).
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Example 1: In game theory, Nash equilibrium.
Motivation: predict behaviour of agents that interact strategically.
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Example 2: Auctions (particular example of games, but in general
discontinuous!).
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Example 2: Auctions (particular example of games, but in general
discontinuous!).

In general, existence of a Nash equilibrium requires continuity
of the payoffs (We will see Nash-Glicksberg Theorem).
This is a strong assumption! in practice false (Hotelling,
Bertrand, Cournot, ...)
What can be done then in terms of existence, computation,
...of an equilibrium ?
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Example 3: Networks.

Theory of network is growing very fast since 20 years.
kind of problems: in Economics, understanding the form of
network (organizations, nation states, web sites, scholarly
publications,...)
example: see social networks.
Existence of Pairwise stability network comes from the
existence of Kakutani’s theorem.
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Example 4: Price formation

Abstract formalization of an exchange economy through an
excess demand.
An excess demand function is is the difference between supply
and demand in good l .
Question: existence of a zero ? comes from Brouwer’s
theorem
And for computation (and proof ?): Sperner Lemma
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Example 5: Extensive form game.
Ultimatum game

Idea of subgame perfect equilibrium (improvement of Nash
equilibrium)
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Example 5: Extensive form game.

What about if strategy spaces are not finite.
Assume for example each strategy space is [0,1] each time,
and each player plays one after the other.
Assume the payoffs are continuous with respect to the path
which is played.
Is there a subgame perfect equilibrium ? method ?
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Beyond question of existence: uniqueness of equilibrium, or
number of equilibria, or the structure of equilibrium set.
Beyond technical questions: how to write a model for which
something can be said ?
Other question: which behaviour induces stability ?
Beyond the course: question of dynamic (how converging to an
equilibrium). Generally, open question (see Smale).
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Syllabus

9*2 Hours
Grade=an exam (approx 17 points)+a participation grade
(approx 3 points)+potentially 2 additional points
The exam=exercise or Questions related closely to the
Lectures.
Participation grade=attendance+small exams at the beginning
of some lectures (additional points)+small oral presentation
during the lectures.
Typically, a student that makes a good oral presentation during
a lecture, which attends the class, and which makes good
small exams during the lectures will get 5 points, to be added
to his final grade on 17.
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Syllabus

Course 1: Fixed-point property, Brouwer theorem.
Course 2: Sperner Lemma, Proof of Brouwer theorem.
Course 3: Topological degree, other proof of Brouwer, zero of
inward continuous vector fields.
Course 4: Correspondences, Kakutani’s theorem.
Course 5: Maximal element, basic existence theorem of a
maximal element.
Course 6: Infinite dimensional case of Brouwer: Schauder
fixed-point theorem.
Course 7: Banach fixed-point theorem, Blackwell fixed-point
theorem, application to Bellman equation.
Course 8: Order theoretic fixed point theorem: Tarski’s
theorem.
Course 9: Some applications (given depending time) : Game
theory, networks, ...
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1. The Fixed-point property A) Reminders

The concept of Continuity, compactness and convexity plays a very
important role in this course.
Continuity of a function can be written using balls (closed or open),
and the definition of balls uses the definition of metric spaces.

Definition: metric spaces

A metric space (E ,d) is a set E together with a function
d : E × E → [0,+∞[, called a distance (or a metric) and satisfying:

For every (x , y) ∈ E × E , d(x , y) = 0 if and only if x = y ;
For every (x , y) ∈ E × E , d(x , y) = d(y , x);
For every (x , y , z) ∈ E × E × E , d(x , y) ≤ d(x , z) + d(z, y);
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1. The Fixed-point property A) Reminders

In many cases, it is possible to measure distances using the
stronger concept of norm:

Norm ‖.‖ on E , a vector spaces IR-e.v.:

‖.‖ mapping from E to IR+;
For every x ∈ E , ‖x‖ = 0 if and only if x = 0;
For every x ∈ E , For every t ∈ IR, ‖tx‖ = |t |‖x‖;
For every (x , y) ∈ E × E , ‖x + y‖ ≤ ‖x‖+ ‖y‖.
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1. The Fixed-point property A) Reminders

Proposition

If (E , ‖.‖) is a norm space, then if we define d(x , y) = ‖x − y‖ for
every (x , y) ∈ E × E , then (E ,d) is a metric space.
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1. The Fixed-point property A) Reminders

Example 0: discrete distance.
Example 1: distance in a graph.
Example 2: d1,d2, d∞ in Rn, ‖.‖1,‖.‖2, ‖.‖∞ in Rn, or in space
of real sequences.
Example 3: d∞ or ‖.‖∞ on B(X ,R), the set of bounded
functions from X to R.
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1. The Fixed-point property A) Reminders

(Definition of Continuity of f : X → Y with balls):

Let (X ,d) and (Y , δ) two metric spaces. Then
A function f : X → Y is continuous if and only if:

(Equivalent Definition of Continuity of f : X → Y with sequences):

Let (X ,d) and (Y , δ) two metric spaces. Then
A function f : X → Y is continuous if and only if:
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1. The Fixed-point property A) Reminders

(Definition of closed end open subsets):

Let (X ,d) a metric space. Then a susbspace A ⊂ X is closed if....
Let (X ,d) a metric space. Then a susbspace A ⊂ X is open if....
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1. The Fixed-point property A) Reminders

Definition of compact subsets:

Let (E ,d) a metric set. A subset K ⊂ E is compact in E if for every
familly (Ui)i∈I of open covering of K (i.e. K ⊂ ∪i∈IUi ) if there is a
finite subcovering (i.e. there is J ⊂ I, J finite, such that K ⊂ ∪i∈JUi ).

Equivalent Definition of compact subsets:

Let (E ,d) a metric set. A subset K ⊂ E is compact in E if and only
if: for every sequence (xn) of K , there exists a subsequence (xφ(n))
which converges in K .
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1. The Fixed-point property B) The fixed point property

Definition:
A metric space (X ,d) has the fixed point property if: for every
continuous function f : X → X , there exists a fixed point x ∈ X of X
(which means f (x) = x).

Questions
[0,1] has the FPP ?
R has the FPP ?
[0,1] ∪ [2,3] has the FPP ?
[0,1[ has the FPP ?
A circle in R2 has the FPP ?
A half-circle R2 has the FPP ?
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2. The Fixed-point property is preserved by
homeomorphism

Definition:
Let (X ,d) and (Y , δ) two metric spaces. A homeomorphism of X
from Y if a function f : X → Y which is continuous, bijective, and
such that f−1 : Y → X is continuous.

Theorem
Let (X ,d) and (Y , δ) two metric spaces such that (X ,d) has the
Fixed Point property. If f is a a homeomorphism of X from Y then Y
has the fixed point property.
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3. The Fixed-point property and continuous retraction

Definition:
Let (X ,d) a metric space and A a subspace of X . A continuous
retraction from X to A is a continuous function f : X → A such that
the restriction of f to A is the identity of A.

Theorem
Let (X ,d) a metric space and A a subspace of X . If there exists f a
continuous retraction from X to A and if (X ,d) has the Fixed Point
property, then (A,d) has the fixed point property.
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4. Convex compact subset in Rn have the Fixed-point
property

Theorem (Brouwer theorem)

Convex compact subset in Rn have the Fixed-point property
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