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0. Presentation, syllabus

Modelization in Micro, Macro, Network theory, game theory:
what are we talking about ?
A model in Economics, social science, ...: mathematical
equations describing the evolution of an economical system
(with agents).
The agent can be a homo œconomicus (neo-classical
paradigm: rational agent), or not (lack of rationality: cognitive
limits, prudence, altruism, cognitive bias...)
But his behaviour is influenced by some forces (happiness,
social forces, altruism, ...) which can sometimes be
contradictory.
In a model, before studying the dynamic, interesting to study
the stability of the system.
Now, Equilibria comes on the scene!
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Let us say that an equilibrium is a description of a system (through
some values of some variables) which does not move despite some
forces.
Example:

But in Physics, there are very stable principle (Nature minimizes
energy...)
And in Economics or Social sciences ?
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Example 1: In game theory, Nash equilibrium.
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Who is Nash ?

John Nash (American mathematician 1928-2015).
One of the greatest genius of mathematics according to some
mathematicians. Won Nobel prize in Economics and Abel medal
(like Nobel prize in mathematics).
Was ill (schizophrenia ?) during 25 years, then he recovered!
recently killed with his wife in a car crash.
See the film "A Beautiful Mind" by Ron Howard (Russel Crowe is
Nash).
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Example 1: In game theory, Nash equilibrium.

definition of a normal form game G.
definition of a Nash equilibrium x of G.
Definition of the Best-replies.
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Three equivalent charatzerization of Nash equilibria

1) Fixed point of Best-replies x ∈ M(x).
2) Fixed point of a well chosen function (original approach of
Nash) x = f (x).
3) Maximal element of some other multivalued function:
P(x) = ∅.
4) zero of some well chosen function: g(x) = 0, where
g(x) = f (x)− x .
Then Questions: structural properties on the previous object
that guarantees existence of...fixed-points, maximal element or
zero of a function.
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Example 2: Auctions (particular example of games, but in general
discontinuous!).
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Example 2: Auctions (particular example of games, but in general
discontinuous!).

In general, existence of a Nash equilibrium requires continuity
of the payoffs (We will see Nash-Glicksberg Theorem).
This is a strong assumption! in practice false (Hotelling,
Bertrand, Cournot, ...)
What can be done then in terms of existence, computation,
...of an equilibrium ?
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Example 3: Networks.
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Example 3: Networks.

Theory of network is growing very fast!
kind of problems: in Economics, understanding the form of
network (organizations, nation states, web sites, scholarly
publications,...)
Basic notion of equilibrium: Pairwise stability notion.
Formal defintion of a weighted network: N agents, links in
[0,1].
Formal definition of preferences of agent on the set of
networks: utility function.
Formal definition of pairwise stability notion.
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Example 4: Price formation

Abstract formalization of an exchange economy through an
excess demand.
Consider L goods; price of good l is pl ≥ 0.
A vector of prices is p = (p1, ...,pl) and is normalized
(
∑

l p2
l = 1)

Call SL−1
+ the set of price vectors.

An excess demand function is Z : SL−1
+ → RL where

Z (p) = (Z1(p), ...,ZL(p) and Zl(p) is the difference between
supply and demand in good l . and satisfies:
1) Z continuous.
2) p.Z (P) = 0 for every p (Walras Law).
3) Inward at the boundary (every good is desirable).
Question: existence of a zero ?
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Example 5: Extensive form game.
Ultimatum game

Idea of subgame perfect equilibrium (improvement of Nash
equilibrium)
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Example 5: Extensive form game.

What about if strategy spaces are not finite.
Assume for example each strategy space is [0,1] each time,
and each player plays one ofter the other.
Assume the payoffs are continuous with respect to the path
which is played.
Is there a subgame perfect equilibrium ? method ?
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Beyond question of existence: uniqueness of equilibrium, or
number of equilibria, or the structure of equilibrium set.
Beyond technical questions: how to write a model for which
something can be said ?
Other question: which behaviour induces stability ?
Beyond the course: question of dynamic (how converging to an
equilibrium). Generally, generally open question (see Smale).
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1. Topological degree

Aim: give a tool to be able to say if an equation f (x) = 0 has at
least one solution.
Work for functions from a subset of Rn to Rn (can be
generalized).
i.e. as many equations as variables.
We will associate to f an integer deg(f ), call the degree of f ,
which is non zero when f (x) = 0 has a solution.
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generalized).
i.e. as many equations as variables.
We will associate to f an integer deg(f ), call the degree of f ,
which is non zero when f (x) = 0 has a solution.
We will treat to different cases: A) The case where the domain
of f has a boundary, but there is no zero on the boundary.
B) the case (more general than the previous one) where the
domain of f may be non-bounded, but the set of zeros of f is
compact
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1. Topological degree b) The bounded case ii)
Homotopy

H
omotopy
Let f and g two continuous functions from Ω to Rn. A continuous
homotopy between f and g is a mapping....
One says that the Homotopy has no zero on the boundary if ...

Remark1: If there is a Homotopy between f and g which has no
zero on the boundary, then f and g have no zeros on the
boundaries.
Remark2: There always exist a Homotopy between f and g, but
there may not exist a homotopy which has no zero on the boundary.
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1. Topological degree b) The bounded case i)
Notations

Let Ω open bounded subset of Rn (case A) described before)
Ω denotes the closure of open subset of Ω. Thus, Ω is compact.
∂Ω denotes the boundary of Ω.
Recall if f : Ω→ Rn is C1, then the Jacobian of f at x ∈ Ω is ...
Recall if f : Ω→ Rn is C1, then the first order development at x
is ....
Bolzano Weierstrass: If (xn) is a bounded sequence of a finite
dimensional space, there exists a convergent subsequence.
Compacity in Rn K ⊂ Rn is compact if and only if it is bounded
and closed, if and only if every sequence of K has a
subsequence which converges in K .
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1. Topological degree b) The bounded case ii)
Homotopy

Homotopy

Let f and g two continuous functions from Ω to Rn. A continuous
homotopy between f and g is a mapping....
One says that the Homotopy has no zero on the boundary if ...

Remark1: If there is a Homotopy between f and g which has no
zero on the boundary, then f and g have no zeros on the
boundaries.
Remark2: There always exist a Homotopy between f and g, but
there may not exist a homotopy which has no zero on the boundary.
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1. Topological degree b) The bounded case iii)
Regularity

Regularity

Let f a continuous functions from Ω to Rn. It is regular if it is C1 and
...

Proposition about Regularity

Let f a C1 functions from Ω to Rn which is regular and has no zero
on the boundary of Ω. Then the set of zero of f is finite.
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1. Topological degree b) The bounded case iv)
Topological degree

Topological degree

To every f continuous function from Ω to Rn (where Ω open and bounded
in Rn) with no zero on the boundary (i.e.∀x ∈ ∂Ω, f (x) 6= 0), we can
associate its topological degree, denoted deg(f ) ∈ ZZ such that:
1) Identity. deg(id)=1 if 0 ∈ Ω.
2) Fundamental property. If deg(f ) 6= 0 then the equation f (x) = 0 has at
least solution in Ω.
3) Degree and homotopy. If H is a continuous homotopy from f : Ω→ Rn

to g : Ω→ Rn with no zero on the boundary, then deg(f ) = deg(g).
4) Additivity. Let Ω1 and Ω2 two open disjoint subsets of Ω and f : Ω→ R
a continuous function such that f−1(0) included in Ω1 ∪ Ω2. Then
deg(f )=deg(f|Ω1 )+deg(f|Ω2 ).
5) Unvariance. deg(f ) =deg(g) for every f : Ω→ Rn and g : Ω→ Rn with
no zero on the boundary and such that ‖f − g‖∞ < d(0, f (∂Ω))).
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1. Topological degree c) The unbounded case

We now allow Ω to be non bounded, but we impose conditions on
the mappings and on the homotopy ("Compactly rooted") so that
the possible sets of roots that will appear are compact!
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1. Topological degree c) The unbounded case

Compactly rooted mapping

The continuous function f from Ω to Rn is said to be compactly
rooted if f−1(0) is a compact subset of Rn.

Homotopy

Let f and g two continuous functions from Ω to Rn. A continuous
homotopy between f and g is said to be compactly rooted if H−1(0)
is a compact subset of [0,1]× Rn.
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1. Topological degree c) The unbounded case :
Regularity

Proposition about Regularity in the unbounded case

Let f a C1 functions from Ω to Rn which is regular and has no zero
on the boundary of Ω. Then the set of zero of f is finite.
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1. Topological degree c) The unbounded case :
topological degree

Topological degree

To every f continuous and compactly rooted function from Ω to Rn

(where Ω open in Rn) with no zero on the boundary
(i.e.∀x ∈ ∂Ω, f (x) 6= 0), we can associate its topological degree,
denoted deg(f ) ∈ ZZ such that:
1) Identity. deg(id)=1 if 0 ∈ Ω.
2) Fundamental property. If deg(f ) 6= 0 then the equation f (x) = 0
has at least solution in Ω.
3) Degree and homotopy. If H is a compactly rooted continuous
homotopy from f : Ω→ Rn to g : Ω→ Rn with no zero on the
boundary, then deg(f ) = deg(g).
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1. Topological degree d) Example of application

Exercise (in Last Year exam).
Prove that the following system admits at least one solution
(x , y) ∈ R2:

x + y = cos(yx)

and
x − y = cos(x).

Please justify precisely each step of your method. All computations
should be explicited.
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