Equilibria, fixed point, computation

Equilibria, fixed point, computation

Philippe Bich, PSE and University Paris 1 Pantheon-Sorbonne, France.

0. Presentation, syllabus

- Modelization in Micro, Macro, Network theory, game theory: what are we talking about?
- A model in Economics, social science, mathematical equations describing the evolution of an economical system (with agents).
- The agent can be a homo œconomicus (neo-classical paradigm: rational agent), or not (lack of rationality: cognitive limits, prudence, altruism, cognitive bias...)
- But his behaviour is influenced by some forces (happiness, social forces, altruism, ...) which can sometimes be contradictory.
- In a model, before studying the dynamic, interesting to study the stability of the system.
- Now, Equilibria comes on the scene!

0. Presentation, syllabus

- Modelization in Micro, Macro, Network theory, game theory: what are we talking about?
- A model in Economics, social science, ...: mathematical equations describing the evolution of an economical system (with agents).
- The agent can be a homo œconomicus (neo-classical paradigm: rational agent), or not (lack of rationality: cognitive limits, prudence, altruism, cognitive bias...)
- But his behaviour is influenced by some forces (happiness, social forces, altruism, ...) which can sometimes be contradictory.
- In a model, before studying the dynamic, interesting to study the stability of the system.
- Now, Equilibria comes on the scene!

0. Presentation, syllabus

- Modelization in Micro, Macro, Network theory, game theory: what are we talking about?
- A model in Economics, social science, ...: mathematical equations describing the evolution of an economical system (with agents).
- The agent can be a homo œconomicus (neo-classical paradigm: rational agent), or not (lack of rationality: cognitive limits, prudence, altruism, cognitive bias...)
- But his behaviour is influenced by some forces (happiness, social forces, altruism, ...) which can sometimes be contradictory.
- In a model, before studying the dynamic, interesting to study the stability of the system.
- Now, Equilibria comes on the scene!

0. Presentation, syllabus

- Modelization in Micro, Macro, Network theory, game theory: what are we talking about?
- A model in Economics, social science, ...: mathematical equations describing the evolution of an economical system (with agents).
- The agent can be a homo œconomicus (neo-classical paradigm: rational agent), or not (lack of rationality: cognitive limits, prudence, altruism, cognitive bias...)
- But his behaviour is influenced by some forces (happiness, social forces, altruism, ...) which can sometimes be contradictory.
- In a model, before studying the dynamic, interesting to study the stability of the system.
- Now, Equilibria comes on the scene!

0. Presentation, syllabus

- Modelization in Micro, Macro, Network theory, game theory: what are we talking about?
- A model in Economics, social science, ...: mathematical equations describing the evolution of an economical system (with agents).
- The agent can be a homo œconomicus (neo-classical paradigm: rational agent), or not (lack of rationality: cognitive limits, prudence, altruism, cognitive bias...)
- But his behaviour is influenced by some forces (happiness, social forces, altruism, ...) which can sometimes be contradictory.
- In a model, before studying the dynamic, interesting to study the stability of the system.
- Now, Equilibria comes on the scene!

0. Presentation, syllabus

- Modelization in Micro, Macro, Network theory, game theory: what are we talking about?
- A model in Economics, social science, ...: mathematical equations describing the evolution of an economical system (with agents).
- The agent can be a homo œconomicus (neo-classical paradigm: rational agent), or not (lack of rationality: cognitive limits, prudence, altruism, cognitive bias...)
- But his behaviour is influenced by some forces (happiness, social forces, altruism, ...) which can sometimes be contradictory.
- In a model, before studying the dynamic, interesting to study the stability of the system.
- Now, Equilibria comes on the scene!

0. Presentation, syllabus

0. Presentation, syllabus

Let us say that an equilibrium is a description of a system (through some values of some variables) which does not move despite some forces.
Example:

But in Physics, there are very stable principle (Nature minimizes energy...)
And in Economics or Social sciences ?

0. Presentation, syllabus

Example 1: In game theory, Nash equilibrium.

Who is Nash?

John Nash (American mathematician 1928-2015).
One of the greatest genius of mathematics according to some mathematicians. Won Nobel prize in Economics and Abel medal (like Nobel prize in mathematics).
Was ill (schizophrenia ?) during 25 years, then he recovered! recently killed with his wife in a car crash.
See the film "A Beautiful Mind" by Ron Howard (Russel Crowe is Nash).

0. Presentation, syllabus

Example 1: In game theory, Nash equilibrium.

- definition of a normal form game G.
- definition of a Nash equilibrium x of G.
- Definition of the Best-replies.

0. Presentation, syllabus

Example 1: In game theory, Nash equilibrium.

- definition of a normal form game G.
- definition of a Nash equilibrium x of G.
- Definition of the Best-replies.

0. Presentation, syllabus

Example 1: In game theory, Nash equilibrium.

- definition of a normal form game G.
- definition of a Nash equilibrium x of G.
- Definition of the Best-replies.

0. Presentation, syllabus

Three equivalent charatzerization of Nash equilibria

- 1) Fixed point of Best-replies $x \in M(x)$.
- 2) Fixed point of a well chosen function (original approach of Nash) $x=f(x)$.
- 3) Maximal element of some other multivalued function: $P(x)=\emptyset$
- 4) zero of some well chosen function: $g(x)=0$, where $g(x)=f(x)-x$.
- Then Questions: structural properties on the previous object that guarantees existence of...fixed-points, maximal element or zero of a function.

0. Presentation, syllabus

Three equivalent charatzerization of Nash equilibria

- 1) Fixed point of Best-replies $x \in M(x)$.
- 2) Fixed point of a well chosen function (original approach of Nash) $x=f(x)$.
- 3) Maximal element of some other multivalued function: $P(x)=\emptyset$
- 4) zero of some well chosen function: $g(x)=0$, where $g(x)=f(x)-x$.
- Then Questions: structural properties on the previous object that guarantees existence of...fixed-points, maximal element or zero of a function.

0. Presentation, syllabus

Three equivalent charatzerization of Nash equilibria

- 1) Fixed point of Best-replies $x \in M(x)$.
- 2) Fixed point of a well chosen function (original approach of Nash) $x=f(x)$.
- 3) Maximal element of some other multivalued function: $P(x)=\emptyset$.
- 4) zero of some well chosen function: $g(x)=0$, where
- Then Questions: structural properties on the previous object that guarantees existence of...fixed-points, maximal element or zero of a function.

0. Presentation, syllabus

Three equivalent charatzerization of Nash equilibria

- 1) Fixed point of Best-replies $x \in M(x)$.
- 2) Fixed point of a well chosen function (original approach of Nash) $x=f(x)$.
- 3) Maximal element of some other multivalued function: $P(x)=\emptyset$.
- 4) zero of some well chosen function: $g(x)=0$, where $g(x)=f(x)-x$.
- Then Questions: structural properties on the previous object that guarantees existence of...fixed-points, maximal element or zero of a function.

0. Presentation, syllabus

Three equivalent charatzerization of Nash equilibria

- 1) Fixed point of Best-replies $x \in M(x)$.
- 2) Fixed point of a well chosen function (original approach of Nash) $x=f(x)$.
- 3) Maximal element of some other multivalued function: $P(x)=\emptyset$.
- 4) zero of some well chosen function: $g(x)=0$, where $g(x)=f(x)-x$.
- Then Questions: structural properties on the previous object that guarantees existence of...fixed-points, maximal element or zero of a function.

0. Presentation, syllabus

Example 2: Auctions (particular example of games, but in general discontinuous!).

0. Presentation, syllabus

Example 2: Auctions (particular example of games, but in general discontinuous!).

- In general, existence of a Nash equilibrium requires continuity of the payoffs (We will see Nash-Glicksberg Theorem).
- This is a strong assumption! in practice false (Hotelling, Bertrand, Cournot, ...)
- What can be done then in terms of existence, computation, ...of an equilibrium?

0. Presentation, syllabus

Example 2: Auctions (particular example of games, but in general discontinuous!).

- In general, existence of a Nash equilibrium requires continuity of the payoffs (We will see Nash-Glicksberg Theorem).
- This is a strong assumption! in practice false (Hotelling, Bertrand, Cournot, ...)
- What can be done then in terms of existence, computation, ...of an equilibrium?

0. Presentation, syllabus

Example 2: Auctions (particular example of games, but in general discontinuous!).

- In general, existence of a Nash equilibrium requires continuity of the payoffs (We will see Nash-Glicksberg Theorem).
- This is a strong assumption! in practice false (Hotelling, Bertrand, Cournot, ...)
- What can be done then in terms of existence, computation, ...of an equilibrium ?

0. Presentation, syllabus

Example 3: Networks.

Philippe Bich

0. Presentation, syllabus

Example 3: Networks.

- Theory of network is growing very fast!
- kind of problems: in Economics, understanding the form of network (organizations, nation states, web sites, scholarly publications,...)
- Basic notion of equilibrium: Pairwise stability notion.
- Formal defintion of a weighted network: N agents, links in $[0,1]$.
- Formal definition of preferences of agent on the set of networks: utility function.
- Formal definition of pairwise stability notion.

0. Presentation, syllabus

Example 3: Networks.

- Theory of network is growing very fast!
- kind of problems: in Economics, understanding the form of network (organizations, nation states, web sites, scholarly publications,...)
- Basic notion of equilibrium: Pairwise stability notion.
- Formal defintion of a weighted network: N agents, links in
- Formal definition of preferences of agent on the set of networks: utility function.
- Formal definition of pairwise stability notion.

0. Presentation, syllabus

Example 3: Networks.

- Theory of network is growing very fast!
- kind of problems: in Economics, understanding the form of network (organizations, nation states, web sites, scholarly publications,...)
- Basic notion of equilibrium: Pairwise stability notion.
- Formal defintion of a weighted network: N agents, links in
- Formal definition of preferences of agent on the set of networks: utility function.
- Formal definition of pairwise stability notion.

0. Presentation, syllabus

Example 3: Networks.

- Theory of network is growing very fast!
- kind of problems: in Economics, understanding the form of network (organizations, nation states, web sites, scholarly publications,...)
- Basic notion of equilibrium: Pairwise stability notion.
- Formal defintion of a weighted network: N agents, links in $[0,1]$.
- Formal definition of preferences of agent on the set of networks: utility function.
- Formal definition of nairwise stability notion.

0. Presentation, syllabus

Example 3: Networks.

- Theory of network is growing very fast!
- kind of problems: in Economics, understanding the form of network (organizations, nation states, web sites, scholarly publications,...)
- Basic notion of equilibrium: Pairwise stability notion.
- Formal defintion of a weighted network: N agents, links in $[0,1]$.
- Formal definition of preferences of agent on the set of networks: utility function.
- Formal definition of pairwise stability notion.

0. Presentation, syllabus

Example 3: Networks.

- Theory of network is growing very fast!
- kind of problems: in Economics, understanding the form of network (organizations, nation states, web sites, scholarly publications,...)
- Basic notion of equilibrium: Pairwise stability notion.
- Formal defintion of a weighted network: N agents, links in $[0,1]$.
- Formal definition of preferences of agent on the set of networks: utility function.
- Formal definition of pairwise stability notion.

0. Presentation, syllabus

Example 4: Price formation

- Abstract formalization of an exchange economy through an excess demand.
- Consider L goods; price of good $/$ is $p_{I} \geq 0$.
- A vector of prices is $p=\left(p_{1}, \ldots, p_{l}\right)$ and is normalized $\left(\sum_{l} p_{1}^{2}=1\right)$
- Call S_{-}^{L-1} the set of price vectors.
- An excess demand function is $Z: S_{+}^{L-1} \rightarrow R^{L}$ where $Z(p)=\left(Z_{1}(p), \ldots, Z_{L}(p)\right.$ and $Z_{l}(p)$ is the difference between supply and demand in good I. and satisfies:
- 1) Z continuous.
- 2) $p . Z(P)=0$ for every p (Walras Law).
- 3) Inward at the boundary (every good is desirable).
- Question: existence of a zero?

0. Presentation, syllabus

Example 4: Price formation

- Abstract formalization of an exchange economy through an excess demand.
- Consider L goods; price of good $/$ is $p_{l} \geq 0$.
- A vector of prices is $p=\left(p_{1}, \ldots, p_{l}\right)$ and is normalized $\left(\sum_{1} p_{1}^{2}=1\right)$
- Call S_{+}^{L-1} the set of price vectors.
- An excess demand function is $Z: S_{-}^{L-1} \rightarrow R^{L}$ where
$Z(p)=\left(Z_{1}(p), \ldots, Z_{L}(p)\right.$ and $Z_{l}(p)$ is the difference between
supply and demand in good I. and satisfies:
- 1) Z continuous.
- 2) $p . Z(P)=0$ for every p (Walras Law).
- 3) Inward at the boundary (every good is desirable).
- Question: existence of a zero ?

0. Presentation, syllabus

Example 4: Price formation

- Abstract formalization of an exchange economy through an excess demand.
- Consider L goods; price of good $/$ is $p_{l} \geq 0$.
- A vector of prices is $p=\left(p_{1}, \ldots, p_{l}\right)$ and is normalized $\left(\sum_{l} p_{I}^{2}=1\right)$
- Call S_{+}^{L-1} the set of price vectors.
- An excess demand function is $Z: S_{+}^{L-1} \rightarrow R^{L}$ where
$Z(p)=\left(Z_{1}(p), \ldots, Z_{L}(p)\right.$ and $Z_{l}(p)$ is the difference between
supply and demand in good I. and satisfies:
- 1) Z continuous.
- 2) $p . Z(P)=0$ for every p (Walras Law).
- 3) Inward at the boundary (every good is desirable).
- Question: existence of a zero ?

0. Presentation, syllabus

Example 4: Price formation

- Abstract formalization of an exchange economy through an excess demand.
- Consider L goods; price of good $/$ is $p_{l} \geq 0$.
- A vector of prices is $p=\left(p_{1}, \ldots, p_{l}\right)$ and is normalized ($\sum_{l} p_{I}^{2}=1$)
- Call S_{+}^{L-1} the set of price vectors.
- An excess demand function is $Z: S_{-}^{L-1} \rightarrow R^{L}$ where
$Z(p)=\left(Z_{1}(p), \ldots, Z_{L}(p)\right.$ and $Z_{l}(p)$ is the difference between
supply and demand in good I. and satisfies:
- 1) Z continuous.
- 2) $p . Z(P)=0$ for every p (Walras Law).
- 3) Inward at the boundary (every good is desirable).
- Question: existence of a zero ?

0. Presentation, syllabus

Example 4: Price formation

- Abstract formalization of an exchange economy through an excess demand.
- Consider L goods; price of good $/$ is $p_{l} \geq 0$.
- A vector of prices is $p=\left(p_{1}, \ldots, p_{l}\right)$ and is normalized ($\sum_{l} p_{I}^{2}=1$)
- Call S_{+}^{L-1} the set of price vectors.
- An excess demand function is $Z: S_{+}^{L-1} \rightarrow R^{L}$ where $Z(p)=\left(Z_{1}(p), \ldots, Z_{L}(p)\right.$ and $Z_{l}(p)$ is the difference between supply and demand in good I. and satisfies:
- 1) Z continuous.
- 2) $p . Z(P)=0$ for every p (Walras Law)
- 3) Inward at the boundary (every good is desirable).
- Question: existence of a zero ?

0. Presentation, syllabus

Example 4: Price formation

- Abstract formalization of an exchange economy through an excess demand.
- Consider L goods; price of good $/$ is $p_{l} \geq 0$.
- A vector of prices is $p=\left(p_{1}, \ldots, p_{l}\right)$ and is normalized ($\sum_{l} p_{l}^{2}=1$)
- Call S_{+}^{L-1} the set of price vectors.
- An excess demand function is $Z: S_{+}^{L-1} \rightarrow R^{L}$ where $Z(p)=\left(Z_{1}(p), \ldots, Z_{L}(p)\right.$ and $Z_{l}(p)$ is the difference between supply and demand in good I. and satisfies:
- 1) Z continuous.
- 2) $p . Z(P)=0$ for every p (Walras Law).
- 3) Inward at the boundary (every good is desirable),
- Question: existence of a zero ?

0. Presentation, syllabus

Example 4: Price formation

- Abstract formalization of an exchange economy through an excess demand.
- Consider L goods; price of good $/$ is $p_{l} \geq 0$.
- A vector of prices is $p=\left(p_{1}, \ldots, p_{l}\right)$ and is normalized ($\sum_{l} p_{I}^{2}=1$)
- Call S_{+}^{L-1} the set of price vectors.
- An excess demand function is $Z: S_{+}^{L-1} \rightarrow R^{L}$ where $Z(p)=\left(Z_{1}(p), \ldots, Z_{L}(p)\right.$ and $Z_{l}(p)$ is the difference between supply and demand in good I. and satisfies:
- 1) Z continuous.
- 2) $p . Z(P)=0$ for every p (Walras Law).
- 3) Inward at the boundary (every good is desirable)
- Question: existence of a zero ?

0. Presentation, syllabus

Example 4: Price formation

- Abstract formalization of an exchange economy through an excess demand.
- Consider L goods; price of good $/$ is $p_{l} \geq 0$.
- A vector of prices is $p=\left(p_{1}, \ldots, p_{l}\right)$ and is normalized $\left(\sum_{l} p_{l}^{2}=1\right)$
- Call S_{+}^{L-1} the set of price vectors.
- An excess demand function is $Z: S_{+}^{L-1} \rightarrow R^{L}$ where $Z(p)=\left(Z_{1}(p), \ldots, Z_{L}(p)\right.$ and $Z_{l}(p)$ is the difference between supply and demand in good I. and satisfies:
- 1) Z continuous.
- 2) $p . Z(P)=0$ for every p (Walras Law).
- 3) Inward at the boundary (every good is desirable).
- Question: existence of a zero ?

0. Presentation, syllabus

Example 4: Price formation

- Abstract formalization of an exchange economy through an excess demand.
- Consider L goods; price of good $/$ is $p_{l} \geq 0$.
- A vector of prices is $p=\left(p_{1}, \ldots, p_{l}\right)$ and is normalized ($\sum_{l} p_{l}^{2}=1$)
- Call S_{+}^{L-1} the set of price vectors.
- An excess demand function is $Z: S_{+}^{L-1} \rightarrow R^{L}$ where $Z(p)=\left(Z_{1}(p), \ldots, Z_{L}(p)\right.$ and $Z_{l}(p)$ is the difference between supply and demand in good I. and satisfies:
- 1) Z continuous.
- 2) $p . Z(P)=0$ for every p (Walras Law).
- 3) Inward at the boundary (every good is desirable).
- Question: existence of a zero?

0. Presentation, syllabus

Example 5: Extensive form game. Ultimatum game

Idea of subgame perfect equilibrium (improvement of Nash equilibrium)

0. Presentation, syllabus

Example 5: Extensive form game.

- What about if strategy spaces are not finite.
- Assume for example each strategy space is $[0,1]$ each time, and each player plays one ofter the other.
- Assume the payoffs are continuous with respect to the path which is played.
- Is there a subgame perfect equilibrium ? method?

0. Presentation, syllabus

Example 5: Extensive form game.

- What about if strategy spaces are not finite.
- Assume for example each strategy space is $[0,1]$ each time, and each player plays one ofter the other.
- Assume the payoffs are continuous with respect to the path which is played.
- Is there a subgame perfect equilibrium ? method?

0. Presentation, syllabus

Example 5: Extensive form game.

- What about if strategy spaces are not finite.
- Assume for example each strategy space is $[0,1]$ each time, and each player plays one ofter the other.
- Assume the payoffs are continuous with respect to the path which is played.
- Is there a subgame perfect equilibrium ? method?

0. Presentation, syllabus

Example 5: Extensive form game.

- What about if strategy spaces are not finite.
- Assume for example each strategy space is $[0,1]$ each time, and each player plays one ofter the other.
- Assume the payoffs are continuous with respect to the path which is played.
- Is there a subgame perfect equilibrium ? method ?

0. Presentation, syllabus

- Beyond question of existence: uniqueness of equilibrium, or number of equilibria, or the structure of equilibrium set.
- Beyond technical questions: how to write a model for which something can be said?
- Other question: which behaviour induces stability ?
- Beyond the course: question of dynamic (how converging to an equilibrium). Generally, generally open question (see Smale).

0. Presentation, syllabus

- Beyond question of existence: uniqueness of equilibrium, or number of equilibria, or the structure of equilibrium set.
- Beyond technical questions: how to write a model for which something can be said?
- Other question: which behaviour induces stability ?
- Beyond the course: question of dynamic (how converging to an equilibrium). Generally, generally open question (see Smale).

0. Presentation, syllabus

- Beyond question of existence: uniqueness of equilibrium, or number of equilibria, or the structure of equilibrium set.
- Beyond technical questions: how to write a model for which something can be said?
- Other question: which behaviour induces stability ?
- Beyond the course: question of dynamic (how converging to an equilibrium). Generally, generally open question (see Smale).

0. Presentation, syllabus

- Beyond question of existence: uniqueness of equilibrium, or number of equilibria, or the structure of equilibrium set.
- Beyond technical questions: how to write a model for which something can be said?
- Other question: which behaviour induces stability ?
- Beyond the course: question of dynamic (how converging to an equilibrium). Generally, generally open question (see Smale).

1. Topological degree

- Aim: give a tool to be able to say if an equation $f(x)=0$ has at least one solution.
- Work for functions from a subset of \mathbf{R}^{n} to \mathbf{R}^{n} (can be generalized).
- i.e. as many equations as variables.
- We will associate to f an integer $\operatorname{deg}(f)$, call the degree of f, which is non zero when $f(x)=0$ has a solution.
- Aim: give a tool to be able to say if an equation $f(x)=0$ has at least one solution.
- Work for functions from a subset of \mathbf{R}^{n} to \mathbf{R}^{n} (can be generalized).
- i.e. as many equations as variables.
- We will associate to f an integer $\operatorname{deg}(f)$, call the degree of f, which is non zero when $f(x)=0$ has a solution.

1. Topological degree

- Aim: give a tool to be able to say if an equation $f(x)=0$ has at least one solution.
- Work for functions from a subset of \mathbf{R}^{n} to \mathbf{R}^{n} (can be generalized).
- i.e. as many equations as variables.
- We will associate to f an integer $\operatorname{deg}(f)$, call the degree of f, which is non zero when $f(x)=0$ has a solution.

1. Topological degree a) Introduction

- Aim: give a tool to be able to say if an equation $f(x)=0$ has at least one solution.
- Works for functions from a subset of \mathbf{R}^{n} to \mathbf{R}^{n} (can be generalized).
- i.e. as many equations as variables.
- We will associate to f an integer deg(f), call the degree of f, which is non zero when $f(x)=0$ has a solution.
- We will treat to different cases: A) The case where the domain of f has a boundary, but there is no zero on the boundary.
- B) the case (more general than the previous one) where the domain of f may be non-bounded, but the set of zeros of f is compact

1. Topological degree a) Introduction

- Aim: give a tool to be able to say if an equation $f(x)=0$ has at least one solution.
- Works for functions from a subset of \mathbf{R}^{n} to \mathbf{R}^{n} (can be generalized).
- i.e. as many equations as variables.
- We will associate to f an integer $\operatorname{deg}(f)$, call the degree of f, which is non zero when $f(x)=0$ has a solution.
- We will treat to different cases: A) The case where the domain of f has a boundary, but there is no zero on the boundary.
- B) the case (more general than the previous one) where the domain of f may be non-bounded, but the set of zeros of f is compact

1. Topological degree a) Introduction

- Aim: give a tool to be able to say if an equation $f(x)=0$ has at least one solution.
- Works for functions from a subset of \mathbf{R}^{n} to \mathbf{R}^{n} (can be generalized).
- i.e. as many equations as variables.
- We will associate to f an integer $\operatorname{deg}(f)$, call the degree of f, which is non zero when $f(x)=0$ has a solution.
- We will treat to different cases: A) The case where the domain of f has a boundary, but there is no zero on the boundary.
- B) the case (more general than the previous one) where the domain of f may be non-bounded, but the set of zeros of f is compact

1. Topological degree a) Introduction

- Aim: give a tool to be able to say if an equation $f(x)=0$ has at least one solution.
- Works for functions from a subset of \mathbf{R}^{n} to \mathbf{R}^{n} (can be generalized).
- i.e. as many equations as variables.
- We will associate to f an integer $\operatorname{deg}(f)$, call the degree of f, which is non zero when $f(x)=0$ has a solution.
- We will treat to different cases: A) The case where the domain of f has a boundary, but there is no zero on the boundary.
- B) the case (more general than the previous one) where the domain of f may be non-bounded, but the set of zeros of f is compact
- Aim: give a tool to be able to say if an equation $f(x)=0$ has at least one solution.
- Works for functions from a subset of \mathbf{R}^{n} to \mathbf{R}^{n} (can be generalized).
- i.e. as many equations as variables.
- We will associate to f an integer $\operatorname{deg}(f)$, call the degree of f, which is non zero when $f(x)=0$ has a solution.
- We will treat to different cases: A) The case where the domain of f has a boundary, but there is no zero on the boundary.
- B) the case (more general than the previous one) where the domain of f may be non-bounded, but the set of zeros of f is compact

1. Topological degree b) The bounded case ii) Homotopy

H

omotopy
Let f and g two continuous functions from $\bar{\Omega}$ to \mathbf{R}^{n}. A continuous homotopy between f and g is a mapping....
One says that the Homotopy has no zero on the boundary if ...
Remark1: If there is a Homotopy between f and g which has no zero on the boundary, then f and g have no zeros on the boundaries.
Remark2: There always exist a Homotopy between f and g, but there may not exist a homotopy which has no zero on the boundary.

1. Topological degree b) The bounded case i) Notations

- Let Ω open bounded subset of \mathbf{R}^{n} (case A) described before)
- $\bar{\Omega}$ denotes the closure of open subset of Ω. Thus, $\bar{\Omega}$ is compact.
- $\partial \Omega$ denotes the boundary of Ω.
- Recall if $f: \Omega \rightarrow \mathbf{R}^{n}$ is C^{1}, then the Jacobian of f at $x \in \Omega$ is
- Recall if $f: \Omega \rightarrow \mathbf{R}^{n}$ is C^{1}, then the first order development at x
- Bolzano Weierstrass: If $\left(x_{n}\right)$ is a bounded sequence of a finite dimensional space, there exists a convergent subsequence.
- Compacity in $\mathbf{R}^{n} K \subset \mathbf{R}^{n}$ is compact if and only if it is bounded and closed, if and only if every sequence of K has a subsequence which converges in K.

1. Topological degree b) The bounded case i) Notations

- Let Ω open bounded subset of \mathbf{R}^{n} (case A) described before)
- $\bar{\Omega}$ denotes the closure of open subset of Ω. Thus, $\bar{\Omega}$ is compact.
- $\partial \Omega$ denotes the boundary of Ω.
- Recall if $f: \Omega \rightarrow \mathbf{R}^{n}$ is C^{1}, then the Jacobian of f at $x \in \Omega$ is
- Recall if $f: \Omega \rightarrow \mathbf{R}^{n}$ is C^{1}, then the first order development at x
- Bolzano Weierstrass: If $\left(x_{n}\right)$ is a bounded sequence of a finite dimensional space, there exists a convergent subsequence.
- Compacity in $\mathbf{R}^{n} K \subset \mathbf{R}^{n}$ is compact if and only if it is bounded and closed, if and only if every sequence of K has a subsequence which converges in K.

1. Topological degree b) The bounded case i) Notations

- Let Ω open bounded subset of \mathbf{R}^{n} (case A) described before)
- $\bar{\Omega}$ denotes the closure of open subset of Ω. Thus, $\bar{\Omega}$ is compact.
- $\partial \Omega$ denotes the boundary of Ω.
- Recall if $f: \Omega \rightarrow \mathbf{R}^{n}$ is C^{1}, then the Jacobian of f at $x \in \Omega$ is ...
- Recall if $f: \Omega \rightarrow \mathbf{R}^{n}$ is C^{1}, then the first order development at x
- Bolzano Weierstrass: If $\left(x_{n}\right)$ is a bounded sequence of a finite dimensional space, there exists a convergent subsequence.
- Compacity in $\mathbf{R}^{n} K \subset \mathbf{R}^{n}$ is compact if and only if it is boundec and closed, if and only if every sequence of K has a subsequence which converges in K.

1. Topological degree b) The bounded case i) Notations

- Let Ω open bounded subset of \mathbf{R}^{n} (case A) described before)
- $\bar{\Omega}$ denotes the closure of open subset of Ω. Thus, $\bar{\Omega}$ is compact.
- $\partial \Omega$ denotes the boundary of Ω.
- Recall if $f: \Omega \rightarrow \mathbf{R}^{n}$ is C^{1}, then the Jacobian of f at $x \in \Omega$ is \ldots
- Recall if $f: \Omega \rightarrow \mathbf{R}^{n}$ is C^{1}, then the first order development at x
- Bolzano Weierstrass: If $\left(x_{n}\right)$ is a bounded sequence of a finite dimensional space, there exists a convergent subsequence.
- Compacity in $\mathbf{R}^{n} K \subset \mathbf{R}^{n}$ is compact if and only if it is bounded and closed, if and only if every sequence of K has a subsequence which converges in K.

1. Topological degree b) The bounded case i) Notations

- Let Ω open bounded subset of \mathbf{R}^{n} (case A) described before)
- $\bar{\Omega}$ denotes the closure of open subset of Ω. Thus, $\bar{\Omega}$ is compact.
- $\partial \Omega$ denotes the boundary of Ω.
- Recall if $f: \Omega \rightarrow \mathbf{R}^{n}$ is C^{1}, then the Jacobian of f at $x \in \Omega$ is \ldots
- Recall if $f: \Omega \rightarrow \mathbf{R}^{n}$ is C^{1}, then the first order development at x is
- Bolzano Weierstrass: If $\left(x_{n}\right)$ is a bounded sequence of a finite dimensional space, there exists a convergent subsequence.
- Compacity in $\mathbf{R}^{n} K \subset \mathbf{R}^{n}$ is compact if and only if it is boundec and closed, if and only if every sequence of K has a subsequence which converges in K.

1. Topological degree b) The bounded case i) Notations

- Let Ω open bounded subset of \mathbf{R}^{n} (case A) described before)
- $\bar{\Omega}$ denotes the closure of open subset of Ω. Thus, $\bar{\Omega}$ is compact.
- $\partial \Omega$ denotes the boundary of Ω.
- Recall if $f: \Omega \rightarrow \mathbf{R}^{n}$ is C^{1}, then the Jacobian of f at $x \in \Omega$ is \ldots
- Recall if $f: \Omega \rightarrow \mathbf{R}^{n}$ is C^{1}, then the first order development at x is
- Bolzano Weierstrass: If $\left(x_{n}\right)$ is a bounded sequence of a finite dimensional space, there exists a convergent subsequence.
- Compacity in $\mathbf{R}^{n} K \subset \mathbf{R}^{n}$ is compact if and only if it is bounded and closed, if and only if every sequence of K has a subsequence which converges in K.

1. Topological degree b) The bounded case i) Notations

- Let Ω open bounded subset of \mathbf{R}^{n} (case A) described before)
- $\bar{\Omega}$ denotes the closure of open subset of Ω. Thus, $\bar{\Omega}$ is compact.
- $\partial \Omega$ denotes the boundary of Ω.
- Recall if $f: \Omega \rightarrow \mathbf{R}^{n}$ is C^{1}, then the Jacobian of f at $x \in \Omega$ is \ldots
- Recall if $f: \Omega \rightarrow \mathbf{R}^{n}$ is C^{1}, then the first order development at x is
- Bolzano Weierstrass: If $\left(x_{n}\right)$ is a bounded sequence of a finite dimensional space, there exists a convergent subsequence.
- Compacity in $\mathbf{R}^{n} K \subset \mathbf{R}^{n}$ is compact if and only if it is bounded and closed, if and only if every sequence of K has a subsequence which converges in K.

1. Topological degree b) The bounded case ii) Homotopy

Homotopy

Let f and g two continuous functions from $\bar{\Omega}$ to \mathbf{R}^{n}. A continuous homotopy between f and g is a mapping.... One says that the Homotopy has no zero on the boundary if ...

> Remark1: If there is a Homotopy between f and g which has no zero on the boundary, then f and g have no zeros on the boundaries.
> Remark2: There always exist a Homotopy between f and g, but there may not exist a homotopy which has no zero on the boundary.

1. Topological degree b) The bounded case ii) Homotopy

Homotopy

Let f and g two continuous functions from $\bar{\Omega}$ to \mathbf{R}^{n}. A continuous homotopy between f and g is a mapping....
One says that the Homotopy has no zero on the boundary if ...
Remark1: If there is a Homotopy between f and g which has no zero on the boundary, then f and g have no zeros on the boundaries.

1. Topological degree b) The bounded case ii) Homotopy

Homotopy

Let f and g two continuous functions from $\bar{\Omega}$ to \mathbf{R}^{n}. A continuous homotopy between f and g is a mapping....
One says that the Homotopy has no zero on the boundary if ...
Remark1: If there is a Homotopy between f and g which has no zero on the boundary, then f and g have no zeros on the boundaries.
Remark2: There always exist a Homotopy between f and g, but there may not exist a homotopy which has no zero on the boundary.

1. Topological degree b) The bounded case iii) Regularity

Regularity

Let f a continuous functions from $\bar{\Omega}$ to \mathbf{R}^{n}. It is regular if it is C^{1} and

Proposition about Regularity

Let f a C^{1} functions from $\bar{\Omega}$ to \mathbb{R}^{n} which is regular and has no zero on the boundary of Ω. Then the set of zero of f is finite.

1. Topological degree b) The bounded case iii) Regularity

Regularity

Let f a continuous functions from $\bar{\Omega}$ to \mathbf{R}^{n}. It is regular if it is C^{1} and

Proposition about Regularity

Let f a C^{1} functions from $\bar{\Omega}$ to \mathbf{R}^{n} which is regular and has no zero on the boundary of Ω. Then the set of zero of f is finite.

1. Topological degree b) The bounded case iv) Topological degree

Topological degree

To every f continuous function from $\bar{\Omega}$ to \mathbf{R}^{n} (where Ω open and bounded in \mathbb{R}^{n}) with no zero on the boundary (i.e. $\forall x \in \partial \Omega, f(x) \neq 0$), we can associate its topological degree, denoted $\operatorname{deg}(f) \in \mathbb{Z}$ such that:
2) Fundamental property. If $\operatorname{deg}(f) \neq 0$ then the equation $f(x)=0$ has at least solution in Ω.
3) Degree and homotopy. If H is a continuous homotopy from $f: \bar{\Omega} \rightarrow \mathbb{R}^{n}$
to $g: \bar{\Omega} \rightarrow \mathbb{R}^{n}$ with no zero on the boundary, then $\operatorname{deg}(f)=\operatorname{deg}(g)$. 4) Additivity. Let Ω_{1} and Ω_{2} two open disjoint subsets of Ω and $f: \Omega \rightarrow \mathbb{R}$ a continuous function such that $f^{-1}(0)$ included in $\Omega_{1} \cup \Omega_{2}$. Then $\operatorname{deg}(f)=\operatorname{deg}\left(f_{\Omega_{1}}\right)+\operatorname{deg}\left(f_{\Omega_{2}}\right)$.
5) Unvariance. $\operatorname{deg}(f)=\operatorname{deg}(g)$ for every $f: \bar{\Omega} \rightarrow \mathbb{R}^{n}$ and $g: \bar{\Omega} \rightarrow \mathbb{R}^{n}$ with no zero on the boundary and such that
$d(0, f(\partial \Omega)))$.

1. Topological degree b) The bounded case iv) Topological degree

Topological degree

To every f continuous function from $\bar{\Omega}$ to \mathbf{R}^{n} (where Ω open and bounded in \mathbb{R}^{n}) with no zero on the boundary (i.e. $\forall x \in \partial \Omega, f(x) \neq 0$), we can associate its topological degree, denoted $\operatorname{deg}(f) \in \mathbb{Z}$ such that: 1) Identity. $\operatorname{deg}(i d)=1$ if $0 \in \Omega$.
2) Fundamental property. If $\operatorname{deg}(f) \neq 0$ then the equation $f(x)=0$ has at least solution in Ω.
3) Degree and homotopy. If H is a continuous homotopy from $f: \bar{\Omega} \rightarrow \mathbb{R}^{n}$
to $g: \bar{\Omega} \rightarrow \mathbb{R}^{n}$ with no zero on the boundary, then $\operatorname{deg}(f)=\operatorname{deg}(g)$.
4) Additivity. Let Ω_{1} and Ω_{2} two open disjoint subsets of Ω and $f: \Omega \rightarrow \mathbb{R}$
a continuous function such that $f^{-1}(0)$ included in $\Omega_{1} \cup \Omega_{2}$. Then
$\operatorname{deg}(f)=\operatorname{deg}\left(f_{\mid \Omega_{1}}\right)+\operatorname{deg}\left(f_{\Omega_{2}}\right)$.
5) Unvariance. $\operatorname{deg}(f)=\operatorname{deg}(g)$ for every $f: \bar{\Omega} \rightarrow \mathbb{R}^{n}$ and $g: \bar{\Omega} \rightarrow \mathbb{R}^{n}$ with no zero on the boundary and such that

1. Topological degree b) The bounded case iv) Topological degree

Topological degree

To every f continuous function from $\bar{\Omega}$ to \mathbf{R}^{n} (where Ω open and bounded in \mathbb{R}^{n}) with no zero on the boundary (i.e. $\forall x \in \partial \Omega, f(x) \neq 0$), we can associate its topological degree, denoted $\operatorname{deg}(f) \in \mathbb{Z}$ such that:

1) Identity. $\operatorname{deg}(i d)=1$ if $0 \in \Omega$.
2) Fundamental property. If $\operatorname{deg}(f) \neq 0$ then the equation $f(x)=0$ has at least solution in Ω.
3) Degree and homotopy. If H is a continuous homotopy from $f: \bar{\Omega}$ to $g: \Omega \rightarrow \mathbb{R}^{n}$ with no zero on the boundary, then $\operatorname{deg}(f)=\operatorname{deg}(g)$. 4) Additivity. Let Ω_{1} and Ω_{2} two open disjoint subsets of Ω and $f: \Omega$ a continuous function such that $f^{-1}(0)$ included in $\Omega_{1} \cup \Omega_{2}$. Then $\operatorname{deg}(f)=\operatorname{deg}\left(f_{\mid \Omega_{1}}\right)+\operatorname{deg}\left(f_{\Omega_{2}}\right)$.
4) Unvariance. $\operatorname{deg}(f)=\operatorname{deg}(g)$ for every $f: \bar{\Omega} \rightarrow \mathbb{R}^{n}$ and $g: \bar{\Omega} \rightarrow \mathbb{R}^{n}$ with no zero on the boundary and such that

1. Topological degree b) The bounded case iv) Topological degree

Topological degree

To every f continuous function from $\bar{\Omega}$ to \mathbf{R}^{n} (where Ω open and bounded in \mathbb{R}^{n}) with no zero on the boundary (i.e. $\forall x \in \partial \Omega, f(x) \neq 0$), we can associate its topological degree, denoted $\operatorname{deg}(f) \in \mathbb{Z}$ such that:

1) Identity. $\operatorname{deg}(i d)=1$ if $0 \in \Omega$.
2) Fundamental property. If $\operatorname{deg}(f) \neq 0$ then the equation $f(x)=0$ has at least solution in Ω.
3) Degree and homotopy. If H is a continuous homotopy from $f: \bar{\Omega} \rightarrow \mathbb{R}^{n}$ to $g: \bar{\Omega} \rightarrow \mathbb{R}^{n}$ with no zero on the boundary, then $\operatorname{deg}(f)=\operatorname{deg}(g)$.
a continuous function such that $f^{-1}(0)$ included in $\Omega_{1} \cup \Omega_{2}$. Then
4) Unvariance. $\operatorname{deg}(f)=\operatorname{deg}(g)$ for every $f: \bar{\Omega} \rightarrow \mathbb{R}^{n}$ and $g: \bar{\Omega} \rightarrow \mathbb{R}^{n}$ with no zero on the boundary and such that $\left.\|f-g\|_{\infty}<d(0, f(\partial \Omega))\right)$.

1. Topological degree b) The bounded case iv) Topological degree

Topological degree

To every f continuous function from $\bar{\Omega}$ to \mathbf{R}^{n} (where Ω open and bounded in \mathbb{R}^{n}) with no zero on the boundary (i.e. $\forall x \in \partial \Omega, f(x) \neq 0$), we can associate its topological degree, denoted $\operatorname{deg}(f) \in \mathbb{Z}$ such that:

1) Identity. $\operatorname{deg}(i d)=1$ if $0 \in \Omega$.
2) Fundamental property. If $\operatorname{deg}(f) \neq 0$ then the equation $f(x)=0$ has at least solution in Ω.
3) Degree and homotopy. If H is a continuous homotopy from $f: \bar{\Omega} \rightarrow \mathbb{R}^{n}$ to $g: \bar{\Omega} \rightarrow \mathbb{R}^{n}$ with no zero on the boundary, then $\operatorname{deg}(f)=\operatorname{deg}(g)$.
4) Additivity. Let Ω_{1} and Ω_{2} two open disjoint subsets of Ω and $f: \Omega \rightarrow \mathbb{R}$ a continuous function such that $f^{-1}(0)$ included in $\Omega_{1} \cup \Omega_{2}$. Then $\operatorname{deg}(f)=\operatorname{deg}\left(f_{\mid \Omega_{1}}\right)+\operatorname{deg}\left(f_{\Omega_{2}}\right)$.
5) Unvariance. $\operatorname{deg}(f)=\operatorname{deg}(g)$ for every $f: \bar{\Omega} \rightarrow \mathbb{R}^{n}$ and $g: \bar{\Omega} \rightarrow \mathbb{R}^{n}$ with no zero on the boundary and such that $\left.\|f-g\|_{\infty}<d(0, f(\partial \Omega))\right)$.

1. Topological degree b) The bounded case iv) Topological degree

Topological degree

To every f continuous function from $\bar{\Omega}$ to \mathbf{R}^{n} (where Ω open and bounded in \mathbb{R}^{n}) with no zero on the boundary (i.e. $\forall x \in \partial \Omega, f(x) \neq 0$), we can associate its topological degree, denoted $\operatorname{deg}(f) \in \mathbb{Z}$ such that:

1) Identity. $\operatorname{deg}(i d)=1$ if $0 \in \Omega$.
2) Fundamental property. If $\operatorname{deg}(f) \neq 0$ then the equation $f(x)=0$ has at least solution in Ω.
3) Degree and homotopy. If H is a continuous homotopy from $f: \bar{\Omega} \rightarrow \mathbb{R}^{n}$ to $g: \bar{\Omega} \rightarrow \mathbb{R}^{n}$ with no zero on the boundary, then $\operatorname{deg}(f)=\operatorname{deg}(g)$.
4) Additivity. Let Ω_{1} and Ω_{2} two open disjoint subsets of Ω and $f: \Omega \rightarrow \mathbb{R}$ a continuous function such that $f^{-1}(0)$ included in $\Omega_{1} \cup \Omega_{2}$. Then $\operatorname{deg}(f)=\operatorname{deg}\left(f_{\mid \Omega_{1}}\right)+\operatorname{deg}\left(f_{\Omega_{2}}\right)$.
5) Unvariance. $\operatorname{deg}(f)=\operatorname{deg}(g)$ for every $f: \bar{\Omega} \rightarrow \mathbb{R}^{n}$ and $g: \bar{\Omega} \rightarrow \mathbb{R}^{n}$ with no zero on the boundary and such that $\left.\|f-g\|_{\infty}<d(0, f(\partial \Omega))\right)$.

We now allow Ω to be non bounded, but we impose conditions on the mappings and on the homotopy ("Compactly rooted") so that the possible sets of roots that will appear are compact!

1. Topological degree c) The unbounded case

Compactly rooted mapping
The continuous function f from $\bar{\Omega}$ to \mathbf{R}^{n} is said to be compactly rooted if $f^{-1}(0)$ is a compact subset of \mathbf{R}^{n}.

> Homotopy
> Let f and g two continuous functions from $\bar{\Omega}$ to \mathbf{R}^{n}. A continuous homotopy between f and g is said to be compactly rooted if $H^{-1}(0)$ is a compact subset of $[0,1] \times \mathbf{R}^{n}$

1. Topological degree c) The unbounded case

Compactly rooted mapping

The continuous function f from $\bar{\Omega}$ to \mathbf{R}^{n} is said to be compactly rooted if $f^{-1}(0)$ is a compact subset of \mathbf{R}^{n}.

Homotopy

Let f and g two continuous functions from $\bar{\Omega}$ to \mathbf{R}^{n}. A continuous homotopy between f and g is said to be compactly rooted if $\mathrm{H}^{-1}(0)$ is a compact subset of $[0,1] \times \mathbf{R}^{n}$.

1. Topological degree c) The unbounded case : Regularity

Proposition about Regularity in the unbounded case

Let f a C^{1} functions from $\bar{\Omega}$ to \mathbf{R}^{n} which is regular and has no zero on the boundary of Ω. Then the set of zero of f is finite.

1. Topological degree c) The unbounded case : topological degree

Topological degree

To every f continuous and compactly rooted function from $\bar{\Omega}$ to \mathbf{R}^{n} (where Ω open in \mathbb{R}^{n}) with no zero on the boundary (i.e. $\forall x \in \partial \Omega, f(x) \neq 0$), we can associate its topological degree, denoted $\operatorname{deg}(f) \in \mathbb{Z}$ such that:
2) Fundamental property. If $\operatorname{deg}(f) \neq 0$ then the equation $f(x)=0$ has at least solution in Ω.
3) Degree and homotopy. If H is a compactly rooted continuous homotopy from $f: \bar{\Omega} \rightarrow \mathbb{R}^{n}$ to $g: \bar{\Omega} \rightarrow \mathbb{R}^{n}$ with no zero on the boundary, then $\operatorname{deg}(f)=\operatorname{deg}(g)$.

1. Topological degree c) The unbounded case : topological degree

Topological degree

To every f continuous and compactly rooted function from $\bar{\Omega}$ to \mathbf{R}^{n} (where Ω open in \mathbb{R}^{n}) with no zero on the boundary (i.e. $\forall x \in \partial \Omega, f(x) \neq 0$), we can associate its topological degree, denoted $\operatorname{deg}(f) \in \mathbb{Z}$ such that:

1) Identity. $\operatorname{deg}(i d)=1$ if $0 \in \Omega$.
2) Fundamental property. If $\operatorname{deg}(f) \neq 0$ then the equation $f(x)=0$ has at least solution in Ω.
3) Dearee and homotopy. If H is a compactly rooted continuous
homotopy from $f: \bar{\Omega} \rightarrow \mathbb{R}^{n}$ to $g: \bar{\Omega} \rightarrow \mathbb{R}^{n}$ with no zero on the boundary, then $\operatorname{deg}(f)=\operatorname{deg}(g)$.

1. Topological degree c) The unbounded case : topological degree

Topological degree

To every f continuous and compactly rooted function from $\bar{\Omega}$ to \mathbf{R}^{n} (where Ω open in \mathbb{R}^{n}) with no zero on the boundary (i.e. $\forall x \in \partial \Omega, f(x) \neq 0$), we can associate its topological degree, denoted $\operatorname{deg}(f) \in \mathbb{Z}$ such that:

1) Identity. $\operatorname{deg}(i d)=1$ if $0 \in \Omega$.
2) Fundamental property. If $\operatorname{deg}(f) \neq 0$ then the equation $f(x)=0$ has at least solution in Ω.

1. Topological degree c) The unbounded case : topological degree

Topological degree

To every f continuous and compactly rooted function from $\bar{\Omega}$ to \mathbf{R}^{n} (where Ω open in \mathbb{R}^{n}) with no zero on the boundary (i.e. $\forall x \in \partial \Omega, f(x) \neq 0$), we can associate its topological degree, denoted $\operatorname{deg}(f) \in \mathbb{Z}$ such that:

1) Identity. $\operatorname{deg}(i d)=1$ if $0 \in \Omega$.
2) Fundamental property. If $\operatorname{deg}(f) \neq 0$ then the equation $f(x)=0$ has at least solution in Ω.
3) Degree and homotopy. If H is a compactly rooted continuous homotopy from $f: \bar{\Omega} \rightarrow \mathbb{R}^{n}$ to $g: \bar{\Omega} \rightarrow \mathbb{R}^{n}$ with no zero on the boundary, then $\operatorname{deg}(f)=\operatorname{deg}(g)$.

1. Topological degree d) Example of application

Exercise (in Last Year exam).

Prove that the following system admits at least one solution $(x, y) \in \mathbf{R}^{2}$:

$$
x+y=\cos (y x)
$$

and

$$
x-y=\cos (x)
$$

Please justify precisely each step of your method. All computations should be explicited.

