Lecture 2: Brouwer and zero of inward vector fields on a convex compact set.

Lecture 2: Brouwer and zero of inward vector fields on a convex compact set.

Philippe Bich, PSE and University Paris 1 Pantheon-Sorbonne, France.

We have seen, from Sperner:

Brouwer Theorem (particular case)

Every continuous mapping $f : \Delta_n \to \Delta_n$, where Δ_n is a *n*-simplex, admits a fixed point, i.e. there exists $x \in \Delta_n$ such that f(x) = x.

But it is true if one replaces Δ_n by any compact convex subset of **R**^{*k*} (*k* > 0 given).

Brouwer Theorem (general version)

Every continuous mapping $f : C \to C$, where *C* is a compact convex subset of \mathbf{R}^k admits a fixed point, i.e. there exists $x \in C$ such that f(x) = x.

We will prove this general theorem in this section.

ヘロト ヘワト ヘビト ヘビト

We have seen, from Sperner:

Brouwer Theorem (particular case)

Every continuous mapping $f : \Delta_n \to \Delta_n$, where Δ_n is a *n*-simplex, admits a fixed point, i.e. there exists $x \in \Delta_n$ such that f(x) = x.

But it is true if one replaces Δ_n by any compact convex subset of \mathbf{R}^k (k > 0 given).

Brouwer Theorem (general version)

Every continuous mapping $f : C \to C$, where *C* is a compact convex subset of \mathbf{R}^k admits a fixed point, i.e. there exists $x \in C$ such that f(x) = x.

We will prove this general theorem in this section.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

We have seen, from Sperner:

Brouwer Theorem (particular case)

Every continuous mapping $f : \Delta_n \to \Delta_n$, where Δ_n is a *n*-simplex, admits a fixed point, i.e. there exists $x \in \Delta_n$ such that f(x) = x.

But it is true if one replaces Δ_n by any compact convex subset of \mathbf{R}^k (k > 0 given).

Brouwer Theorem (general version)

Every continuous mapping $f : C \to C$, where *C* is a compact convex subset of \mathbf{R}^k admits a fixed point, i.e. there exists $x \in C$ such that f(x) = x.

We will prove this general theorem in this section.

・ロット (雪) () () () ()

Philippe Bich Lecture 1: Sperner, Brouwer, Nash

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - 釣A@

Philippe Bich Lecture 1: Sperner, Brouwer, Nash

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - 釣A@

- If *f* is not continuous, may be false!
- if *C* is not closed, may be false!
- if C not bounded, may be false!
- If C is not convex, may be false!

• If f is not continuous, may be false!

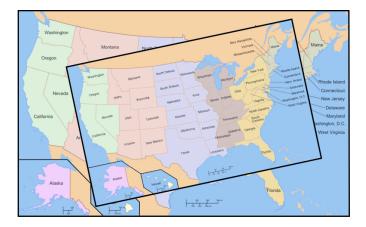
- if *C* is not closed, may be false!
- if C not bounded, may be false!
- If C is not convex, may be false!

- If f is not continuous, may be false!
- if C is not closed, may be false!
- if C not bounded, may be false!
- If *C* is not convex, may be false!

- If f is not continuous, may be false!
- if C is not closed, may be false!
- if C not bounded, may be false!
- If C is not convex, may be false!

- If f is not continuous, may be false!
- if C is not closed, may be false!
- if C not bounded, may be false!
- If C is not convex, may be false!

Section 2. Figure, by-products



Philippe Bich Lecture 1: Sperner, Brouwer, Nash

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

- Brouwer's theorem in game theory ? could be seen as follows: $C = C_1 \times C_2 \dots \times C_n$ where C_i strategy space of player *i*, $c = (c_1, ..., c_n)$ is a profile of strategies for each player, and $f(c) = (f_1(c), ..., f_n(c))$ where $f_i(c)$ is a strategy of player *i* that is the best, given the strategies $c_1, ..., c_n$ of the others.
- Then a fixed-point f(c) = c is ... a Nash equilibrium.
- Problem: in general, several optimal responses to other strategies, not always possible to find one that moves continuously with respect to the others.
- Example: $C_1 = C_2 = [0, 1]$, payoff of player 1: $u_1(c_1, c_2) = c_1(\frac{1}{2} - c_2)$, payoff of player 2: $u_2(c_1, c_2) = c_2(\frac{1}{2} - c_1)$.
- We will see after a say to solve this "problem".

・ロト ・ 理 ト ・ ヨ ト ・

- Brouwer's theorem in game theory ? could be seen as follows: $C = C_1 \times C_2 \dots \times C_n$ where C_i strategy space of player *i*, $c = (c_1, ..., c_n)$ is a profile of strategies for each player, and $f(c) = (f_1(c), ..., f_n(c))$ where $f_i(c)$ is a strategy of player *i* that is the best, given the strategies $c_1, ..., c_n$ of the others.
- Then a fixed-point f(c) = c is ... a Nash equilibrium.
- Problem: in general, several optimal responses to other strategies, not always possible to find one that moves continuously with respect to the others.
- Example: $C_1 = C_2 = [0, 1]$, payoff of player 1: $u_1(c_1, c_2) = c_1(\frac{1}{2} - c_2)$, payoff of player 2: $u_2(c_1, c_2) = c_2(\frac{1}{2} - c_1)$.
- We will see after a say to solve this "problem".

- Brouwer's theorem in game theory ? could be seen as follows: $C = C_1 \times C_2 \dots \times C_n$ where C_i strategy space of player *i*, $c = (c_1, ..., c_n)$ is a profile of strategies for each player, and $f(c) = (f_1(c), ..., f_n(c))$ where $f_i(c)$ is a strategy of player *i* that is the best, given the strategies $c_1, ..., c_n$ of the others.
- Then a fixed-point f(c) = c is ... a Nash equilibrium.
- Problem: in general, several optimal responses to other strategies, not always possible to find one that moves continuously with respect to the others.
- Example: $C_1 = C_2 = [0, 1]$, payoff of player 1: $u_1(c_1, c_2) = c_1(\frac{1}{2} - c_2)$, payoff of player 2: $u_2(c_1, c_2) = c_2(\frac{1}{2} - c_1)$.
- We will see after a say to solve this "problem".

- Brouwer's theorem in game theory ? could be seen as follows: $C = C_1 \times C_2 \dots \times C_n$ where C_i strategy space of player *i*, $c = (c_1, ..., c_n)$ is a profile of strategies for each player, and $f(c) = (f_1(c), ..., f_n(c))$ where $f_i(c)$ is a strategy of player *i* that is the best, given the strategies $c_1, ..., c_n$ of the others.
- Then a fixed-point f(c) = c is ... a Nash equilibrium.
- Problem: in general, several optimal responses to other strategies, not always possible to find one that moves continuously with respect to the others.
- Example: $C_1 = C_2 = [0, 1]$, payoff of player 1: $u_1(c_1, c_2) = c_1(\frac{1}{2} - c_2)$, payoff of player 2: $u_2(c_1, c_2) = c_2(\frac{1}{2} - c_1)$.
- We will see after a say to solve this "problem".

- Brouwer's theorem in game theory ? could be seen as follows: $C = C_1 \times C_2 \dots \times C_n$ where C_i strategy space of player *i*, $c = (c_1, ..., c_n)$ is a profile of strategies for each player, and $f(c) = (f_1(c), ..., f_n(c))$ where $f_i(c)$ is a strategy of player *i* that is the best, given the strategies $c_1, ..., c_n$ of the others.
- Then a fixed-point f(c) = c is ... a Nash equilibrium.
- Problem: in general, several optimal responses to other strategies, not always possible to find one that moves continuously with respect to the others.
- Example: $C_1 = C_2 = [0, 1]$, payoff of player 1: $u_1(c_1, c_2) = c_1(\frac{1}{2} - c_2)$, payoff of player 2: $u_2(c_1, c_2) = c_2(\frac{1}{2} - c_1)$.
- We will see after a say to solve this "problem".

Section 2. Figure, by-products: b) zero of inward vector fields.

Definition

Let *B* the closed unit ball of \mathbb{R}^n . Let $f : B \to \mathbb{R}^n$: we call it an inward vector field if for every $x \in S = \{x \in B, ||x|| = 1\}$ one has $\langle f(x), x \rangle \leq 0$.

Theorem

Every continuous and inward vector field on B admits a zero, i.e., there exists $\bar{x} \in B$ such that $f(\bar{x}) = 0$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Section 2. Figure, by-products: b) zero of inward vector fields.

Definition

Let *B* the closed unit ball of \mathbb{R}^n . Let $f : B \to \mathbb{R}^n$: we call it an inward vector field if for every $x \in S = \{x \in B, ||x|| = 1\}$ one has $\langle f(x), x \rangle \leq 0$.

Theorem

Every continuous and inward vector field on B admits a zero, *i.e.*, there exists $\bar{x} \in B$ such that $f(\bar{x}) = 0$.

- The existence of a zero of an inward vector field can be easily applied to the excess demand of an economy: $c = (c_1, ..., c_n)$ is a vector of prices (where *n* goods), $f(c) = (f_1(c), ..., f_n(c))$ is the vector excess demand (e.g., $f_1(c) > 0$ means aggregate supply in good 1 is higher than aggregate demand in this good.)
- if one wants to incorporates markets and time, a possibility is to add some J × S matrix V in the excess demand: each column j = 1, ..., J gives the payoffs of some assets in some differents states of nature s = 1, ..., S tomorrow.
- In general, the returns depends on the prices of the economy, and we require some extension of the previous theorem by allowing *f* depends on *p* and Span *V*(*p*), the vector space spanned by *V*(*p*) (which appears naturally in the budget set of consumers).
- Similarly, we need some extension of Brouwer solving the equation p = f(p, SpanV(p)). But then discontinuities: See "An extension of Brouwer's fixed point theorem allowing discontinuities", Philippe Bich, Compte rendu à l'académie des sciences 2004]

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

- The existence of a zero of an inward vector field can be easily applied to the excess demand of an economy: $c = (c_1, ..., c_n)$ is a vector of prices (where *n* goods), $f(c) = (f_1(c), ..., f_n(c))$ is the vector excess demand (e.g., $f_1(c) > 0$ means aggregate supply in good 1 is higher than aggregate demand in this good.)
- if one wants to incorporates markets and time, a possibility is to add some *J* × *S* matrix *V* in the excess demand: each column *j* = 1, ..., *J* gives the payoffs of some assets in some differents states of nature *s* = 1, ..., *S* tomorrow.
- In general, the returns depends on the prices of the economy, and we require some extension of the previous theorem by allowing *f* depends on *p* and Span *V*(*p*), the vector space spanned by *V*(*p*) (which appears naturally in the budget set of consumers).
- Similarly, we need some extension of Brouwer solving the equation p = f(p, SpanV(p)). But then discontinuities: See "An extension of Brouwer's fixed point theorem allowing discontinuities", Philippe Bich, Compte rendu à l'académie des sciences 2004]

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

- The existence of a zero of an inward vector field can be easily applied to the excess demand of an economy: $c = (c_1, ..., c_n)$ is a vector of prices (where *n* goods), $f(c) = (f_1(c), ..., f_n(c))$ is the vector excess demand (e.g., $f_1(c) > 0$ means aggregate supply in good 1 is higher than aggregate demand in this good.)
- if one wants to incorporates markets and time, a possibility is to add some *J* × *S* matrix *V* in the excess demand: each column *j* = 1, ..., *J* gives the payoffs of some assets in some differents states of nature *s* = 1, ..., *S* tomorrow.
- In general, the returns depends on the prices of the economy, and we require some extension of the previous theorem by allowing *f* depends on *p* and Span *V*(*p*), the vector space spanned by *V*(*p*) (which appears naturally in the budget set of consumers).
- Similarly, we need some extension of Brouwer solving the equation p = f(p, SpanV(p)). But then discontinuities: See "An extension of Brouwer's fixed point theorem allowing discontinuities", Philippe Bich, Compte rendu à l'académie des sciences 2004]

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

- The existence of a zero of an inward vector field can be easily applied to the excess demand of an economy: $c = (c_1, ..., c_n)$ is a vector of prices (where *n* goods), $f(c) = (f_1(c), ..., f_n(c))$ is the vector excess demand (e.g., $f_1(c) > 0$ means aggregate supply in good 1 is higher than aggregate demand in this good.)
- if one wants to incorporates markets and time, a possibility is to add some *J* × *S* matrix *V* in the excess demand: each column *j* = 1, ..., *J* gives the payoffs of some assets in some differents states of nature *s* = 1, ..., *S* tomorrow.
- In general, the returns depends on the prices of the economy, and we require some extension of the previous theorem by allowing *f* depends on *p* and Span *V*(*p*), the vector space spanned by *V*(*p*) (which appears naturally in the budget set of consumers).
- Similarly, we need some extension of Brouwer solving the equation *p* = *f*(*p*, *SpanV*(*p*)). But then discontinuities: See "An extension of Brouwer's fixed point theorem allowing discontinuities", Philippe Bich, Compte rendu à l'académie des sciences 2004]

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Section 3. Proof of Brouwer's theorem. a) Homeorphism definition

In fact, Brouwer's theorem is true if one replaces Δ_n by any subset *C* that is homeomorphic to Δ_n :

Homeomorphic definition

A set $C \subset \mathbf{R}^k$ is homeomorphic to another set $D \subset \mathbf{R}^k$ if there exists a bijective mapping *f* from *C* to *D* such that *f* and f^{-1} are continuous.

(EXERCISE 1:) Prove that in \mathbf{R}^1 ,]0, 1[and \mathbf{R}^1 are homeomorphic. Prove that in \mathbf{R}^k , all the closed balls are homeomorphic.

(EXERCISE 2:) Prove that in \mathbf{R}^2 , the unit circle and the unit ball are not homeomorphic.

ヘロト ヘワト ヘビト ヘビト

Section 3. Proof of Brouwer's theorem. a) Homeorphism definition

In fact, Brouwer's theorem is true if one replaces Δ_n by any subset *C* that is homeomorphic to Δ_n :

Homeomorphic definition

A set $C \subset \mathbf{R}^k$ is homeomorphic to another set $D \subset \mathbf{R}^k$ if there exists a bijective mapping *f* from *C* to *D* such that *f* and f^{-1} are continuous.

(EXERCISE 1:) Prove that in \mathbf{R}^1 ,]0, 1[and \mathbf{R}^1 are homeomorphic. Prove that in \mathbf{R}^k , all the closed balls are homeomorphic. (EXERCISE 2:) Prove that in \mathbf{R}^2 , the unit circle and the unit

(EXERCISE 2:) Prove that in \mathbf{R}^2 , the unit circle and the unit ball are not homeomorphic.

ヘロト ヘワト ヘビト ヘビト

In fact, Brouwer's theorem is true if one replaces Δ_n by any subset *C* that is homeomorphic to Δ_n :

Homeomorphic definition

A set $C \subset \mathbf{R}^k$ is homeomorphic to another set $D \subset \mathbf{R}^k$ if there exists a bijective mapping *f* from *C* to *D* such that *f* and f^{-1} are continuous.

(EXERCISE 1:) Prove that in \mathbf{R}^1 ,]0, 1[and \mathbf{R}^1 are homeomorphic. Prove that in \mathbf{R}^k , all the closed balls are homeomorphic.

(EXERCISE 2:) Prove that in \mathbf{R}^2 , the unit circle and the unit ball are not homeomorphic.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

In fact, Brouwer's theorem is true if one replaces Δ_n by any subset *C* that is homeomorphic to Δ_n :

Homeomorphic definition

A set $C \subset \mathbf{R}^k$ is homeomorphic to another set $D \subset \mathbf{R}^k$ if there exists a bijective mapping *f* from *C* to *D* such that *f* and f^{-1} are continuous.

(EXERCISE 1:) Prove that in \mathbf{R}^1 ,]0, 1[and \mathbf{R}^1 are homeomorphic. Prove that in \mathbf{R}^k , all the closed balls are homeomorphic.

(EXERCISE 2:) Prove that in \mathbf{R}^2 , the unit circle and the unit ball are not homeomorphic.

・ロット (雪) () () () ()

Section 3. Proof of Brouwer's theorem. b) Proof of Brouwer when *C* homeomorphic to Δ_n .

This is easy to prove that this theorem is true:

Brouwer Theorem

Every continuous mapping $f : C \to C$, where *C* is homeomorphic to Δ_n , admits a fixed point, i.e. there exists $x \in C$ such that f(x) = x.

(EXERCISE 3:) Prove it, using the version of Brouwer proved with Sperner's Lemma.

ヘロト 人間 ト ヘヨト ヘヨト

Section 3. Proof of Brouwer's theorem. b) Proof of Brouwer when *C* homeomorphic to Δ_n .

This is easy to prove that this theorem is true:

Brouwer Theorem

Every continuous mapping $f : C \to C$, where *C* is homeomorphic to Δ_n , admits a fixed point, i.e. there exists $x \in C$ such that f(x) = x.

(EXERCISE 3:) Prove it, using the version of Brouwer proved with Sperner's Lemma.

ヘロト ヘアト ヘビト ヘビト

Section 3. Proof of Brouwer's theorem. c) Characterization of convex compact through homeomorphism

Thus, to prove the version of Brouwer with *C* convex compact, we will prove:

Characterization of compact convex subsets in finite dimension

Every compact and convex subset $C \subset \mathbb{R}^n$ with a nonempty interior is homeomorphic to B(0, 1), the closed unit ball of \mathbb{R}^n .

We will see later that the nonempty interior assumption is not restrictive.

・ 同 ト ・ ヨ ト ・ ヨ ト

Section 3. Proof of Brouwer's theorem. c) Characterization of convex compact through homeomorphism

Thus, to prove the version of Brouwer with *C* convex compact, we will prove:

Characterization of compact convex subsets in finite dimension

Every compact and convex subset $C \subset \mathbf{R}^n$ with a nonempty interior is homeomorphic to B(0, 1), the closed unit ball of \mathbf{R}^n .

We will see later that the nonempty interior assumption is not restrictive.

ヘロア 人間 アメヨア 人口 ア

Section 3. Proof of Brouwer's theorem. c) Characterization of convex compact through homeomorphism

Thus, to prove the version of Brouwer with *C* convex compact, we will prove:

Characterization of compact convex subsets in finite dimension

Every compact and convex subset $C \subset \mathbf{R}^n$ with a nonempty interior is homeomorphic to B(0, 1), the closed unit ball of \mathbf{R}^n .

We will see later that the nonempty interior assumption is not restrictive.

く 同 ト く ヨ ト く ヨ ト

• If $C = \{x \in \mathbb{R}^n, ||x|| \le 1\}$, it is easy to prove that $\forall x \in C, ||x|| = \inf\{\lambda > 0, \frac{x}{\lambda} \in C\}$. (EXERCISE 4:) Prove it.

Definition Let $C \subset \mathbf{R}^n$ such that $0 \in int(C)$, we define *p* the jauge of *C* as follows: $\forall x \in \mathbf{R}^n$, $p(x) = inf\{\lambda > 0, \frac{x}{\lambda} \in C\}$.

- Properties: If C compact convex and $0 \in int C$, one has:
- (1) there is M > 0 such that ∀x ∈ E, 0 ≤ p(x) ≤ M||x||.
 (EXERCISE 5:) Prove it.
- (3) $\forall t \ge 0, p(tx) = tp(x);$ (EXERCISE 6:)
- (4) $\forall (x, y) \in E, p(x + y) \le p(x) + p(y)$. (EXERCISE 7:)

ヘロン 人間 とくほ とくほ とう

• If $C = \{x \in \mathbb{R}^n, ||x|| \le 1\}$, it is easy to prove that $\forall x \in C, ||x|| = \inf\{\lambda > 0, \frac{x}{\lambda} \in C\}$. (EXERCISE 4:) Prove it.

Definition Let $C \subset \mathbf{R}^n$ such that $0 \in int(C)$, we define p the jauge of C as follows: $\forall x \in \mathbf{R}^n$, $p(x) = inf\{\lambda > 0, \frac{x}{\lambda} \in C\}$.

- Properties: If *C* compact convex and $0 \in int C$, one has:
- (1) there is M > 0 such that ∀x ∈ E, 0 ≤ p(x) ≤ M||x||.
 (EXERCISE 5:) Prove it.
- (3) $\forall t \ge 0, p(tx) = tp(x);$ (EXERCISE 6:)
- (4) $\forall (x, y) \in E, p(x + y) \le p(x) + p(y)$. (EXERCISE 7:)

・ロト ・ 理 ト ・ ヨ ト ・

• If $C = \{x \in \mathbb{R}^n, ||x|| \le 1\}$, it is easy to prove that $\forall x \in C, ||x|| = \inf\{\lambda > 0, \frac{x}{\lambda} \in C\}$. (EXERCISE 4:) Prove it.

Definition Let $C \subset \mathbf{R}^n$ such that $0 \in int(C)$, we define p the jauge of C as follows: $\forall x \in \mathbf{R}^n$, $p(x) = inf\{\lambda > 0, \frac{x}{\lambda} \in C\}$.

• Properties: If C compact convex and $0 \in int C$, one has:

- (1) there is M > 0 such that ∀x ∈ E, 0 ≤ p(x) ≤ M||x||.
 (EXERCISE 5:) Prove it.
- (3) $\forall t \ge 0, p(tx) = tp(x);$ (EXERCISE 6:)
- (4) $\forall (x, y) \in E, p(x + y) \le p(x) + p(y)$. (EXERCISE 7:)

ヘロン 人間 とくほ とくほとう

• If $C = \{x \in \mathbb{R}^n, ||x|| \le 1\}$, it is easy to prove that $\forall x \in C, ||x|| = \inf\{\lambda > 0, \frac{x}{\lambda} \in C\}$. (EXERCISE 4:) Prove it.

Definition Let $C \subset \mathbf{R}^n$ such that $0 \in int(C)$, we define p the jauge of C as follows: $\forall x \in \mathbf{R}^n$, $p(x) = inf\{\lambda > 0, \frac{x}{\lambda} \in C\}$.

- Properties: If C compact convex and $0 \in int C$, one has:
- (1) there is M > 0 such that $\forall x \in E, 0 \le p(x) \le M ||x||$. (EXERCISE 5:) Prove it.
- (3) $\forall t \ge 0, p(tx) = tp(x);$ (EXERCISE 6:)
- (4) $\forall (x, y) \in E, p(x + y) \le p(x) + p(y)$. (EXERCISE 7:)

• If $C = \{x \in \mathbb{R}^n, ||x|| \le 1\}$, it is easy to prove that $\forall x \in C, ||x|| = \inf\{\lambda > 0, \frac{x}{\lambda} \in C\}$. (EXERCISE 4:) Prove it.

Definition Let $C \subset \mathbf{R}^n$ such that $0 \in int(C)$, we define p the jauge of C as follows: $\forall x \in \mathbf{R}^n$, $p(x) = inf\{\lambda > 0, \frac{x}{\lambda} \in C\}$.

- Properties: If C compact convex and $0 \in int C$, one has:
- (1) there is M > 0 such that $\forall x \in E, 0 \le p(x) \le M ||x||$. (EXERCISE 5:) Prove it.
- (3) $\forall t \ge 0, p(tx) = tp(x); (EXERCISE 6:)$
- (4) $\forall (x, y) \in E, p(x + y) \le p(x) + p(y)$. (EXERCISE 7:)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

• If $C = \{x \in \mathbb{R}^n, ||x|| \le 1\}$, it is easy to prove that $\forall x \in C, ||x|| = \inf\{\lambda > 0, \frac{x}{\lambda} \in C\}$. (EXERCISE 4:) Prove it.

Definition Let $C \subset \mathbf{R}^n$ such that $0 \in int(C)$, we define p the jauge of C as follows: $\forall x \in \mathbf{R}^n$, $p(x) = inf\{\lambda > 0, \frac{x}{\lambda} \in C\}$.

- Properties: If C compact convex and $0 \in int C$, one has:
- (1) there is M > 0 such that $\forall x \in E, 0 \le p(x) \le M ||x||$. (EXERCISE 5:) Prove it.
- (3) $\forall t \ge 0, p(tx) = tp(x);$ (EXERCISE 6:)
- (4) $\forall (x, y) \in E, p(x + y) \le p(x) + p(y)$. (EXERCISE 7:)

Section 3. Proof of Brouwer's theorem. d) Proof of the previous characterization.

Characterization of compact convex subsets in finite dimension

Every compact and convex subset $C \subset \mathbf{R}^n$ such that $0 \in int(C)$ is homeomorphic to B(0, 1), the closed unit ball of \mathbf{R}^n , the homeomorphism can be taken as $f : C \to B(0, 1)$ defined by $f(x) = p(x) \cdot \frac{x}{\|x\|}$, where p is the jauge of C.

(EXERCISE 8: proof).

Remark that if $0 \notin int(C)$ but C has a nonempty interior one can conclude similarly.

Remark that if C has an empty interior, one can consider a smaller subspace which contains C in which C has a nonempty interior, and we can conclude similarly, replacing n by a smaller

・ロット (雪) () () () ()

Section 3. Proof of Brouwer's theorem. d) Proof of the previous characterization.

Characterization of compact convex subsets in finite dimension

Every compact and convex subset $C \subset \mathbf{R}^n$ such that $0 \in int(C)$ is homeomorphic to B(0, 1), the closed unit ball of \mathbf{R}^n , the homeomorphism can be taken as $f : C \to B(0, 1)$ defined by $f(x) = p(x) \cdot \frac{x}{\|x\|}$, where p is the jauge of C.

(EXERCISE 8: proof).

Remark that if $0 \notin int(C)$ but *C* has a nonempty interior one can conclude similarly.

Remark that if C has an empty interior, one can consider a smaller subspace which contains C in which C has a nonempty interior, and we can conclude similarly, replacing n by a smaller n.

ヘロン ヘアン ヘビン ヘビン

Section 3. Proof of Brouwer's theorem. d) Proof of the previous characterization.

Characterization of compact convex subsets in finite dimension

Every compact and convex subset $C \subset \mathbf{R}^n$ such that $0 \in int(C)$ is homeomorphic to B(0, 1), the closed unit ball of \mathbf{R}^n , the homeomorphism can be taken as $f : C \to B(0, 1)$ defined by $f(x) = p(x) \cdot \frac{x}{\|x\|}$, where p is the jauge of C.

(EXERCISE 8: proof).

Remark that if $0 \notin int(C)$ but *C* has a nonempty interior one can conclude similarly.

Remark that if C has an empty interior, one can consider a smaller subspace which contains C in which C has a nonempty interior, and we can conclude similarly, replacing n by a smaller

п.

ヘロン ヘアン ヘビン ヘビン