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Section 1. Brouwer’s theorem

We have seen, from Sperner:

Brouwer Theorem (particular case)
Every continuous mapping f : ∆n → ∆n, where ∆n is a
n-simplex, admits a fixed point, i.e. there exists x ∈ ∆n such
that f (x) = x .

But it is true if one replaces ∆n by any compact convex subset
of Rk (k > 0 given).

Brouwer Theorem (general version)
Every continuous mapping f : C → C, where C is a compact
convex subset of Rk admits a fixed point, i.e. there exists x ∈ C
such that f (x) = x .

We will prove this general theorem in this section.
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Section 1. Brouwer’s theorem

If f is not continuous, may be false!
if C is not closed, may be false!
if C not bounded, may be false!
If C is not convex, may be false!
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Section 2. Figure, by-products
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Section 2. Figure, by-products: a) Game theory

Brouwer’s theorem in game theory ? could be seen as
follows: C = C1 × C2...× Cn where Ci strategy space of
player i , c = (c1, ..., cn) is a profile of strategies for each
player, and f (c) = (f1(c), ..., fn(c)) where fi(c) is a strategy
of player i that is the best, given the strategies c1, ..., cn of
the others.
Then a fixed-point f (c) = c is ... a Nash equilibrium.
Problem: in general, several optimal responses to other
strategies, not always possible to find one that moves
continuously with respect to the others.
Example: C1 = C2 = [0,1], payoff of player 1:
u1(c1, c2) = c1(1

2 − c2), payoff of player 2:
u2(c1, c2) = c2(1

2 − c1).
We will see after a say to solve this "problem".
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Section 2. Figure, by-products: b) zero of inward
vector fields.

Definition
Let B the closed unit ball of IRn. Let f : B → IRn: we call it an
inward vector field if for every x ∈ S = {x ∈ B, ‖x‖ = 1} one
has < f (x), x >≤ 0.

Theorem
Every continuous and inward vector field on B admits a zero,
i.e., there exists x̄ ∈ B such that f (x̄) = 0.
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Section 2. Figure, by-products: c) General equilibrium.

The existence of a zero of an inward vector field can be easily applied
to the excess demand of an economy: c = (c1, ..., cn) is a vector of
prices (where n goods), f (c) = (f1(c), ..., fn(c)) is the vector excess
demand (e.g., f1(c) > 0 means aggregate supply in good 1 is higher
than aggregate demand in this good.)

if one wants to incorporates markets and time, a possibility is to add
some J × S matrix V in the excess demand: each column j = 1, ..., J
gives the payoffs of some assets in some differents states of nature
s = 1, ...,S tomorrow.

In general, the returns depends on the prices of the economy, and we
require some extension of the previous theorem by allowing f depends
on p and Span V (p), the vector space spanned by V (p) (which
appears naturally in the budget set of consumers).

Similarly, we need some extension of Brouwer solving the equation
p = f (p,SpanV (p)). But then discontinuities: See "An extension of
Brouwer’s fixed point theorem allowing discontinuities", Philippe
Bich, Compte rendu à l’académie des sciences 2004]
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Section 3. Proof of Brouwer’s theorem. a)
Homeorphism definition

In fact, Brouwer’s theorem is true if one replaces ∆n by any
subset C that is homeomorphic to ∆n:

Homeomorphic definition

A set C ⊂ Rk is homeomorphic to another set D ⊂ Rk if there
exists a bijective mapping f from C to D such that f and f−1 are
continuous.

(EXERCISE 1:) Prove that in R1, ]0,1[ and R1 are
homeomorphic. Prove that in Rk , all the closed balls are
homeomorphic.
(EXERCISE 2:) Prove that in R2, the unit circle and the unit ball
are not homeomorphic.
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Section 3. Proof of Brouwer’s theorem. b) Proof of
Brouwer when C homeomorphic to ∆n.

This is easy to prove that this theorem is true:

Brouwer Theorem
Every continuous mapping f : C → C, where C is
homeomorphic to ∆n, admits a fixed point, i.e. there exists
x ∈ C such that f (x) = x .

(EXERCISE 3:) Prove it, using the version of Brouwer proved
with Sperner’s Lemma.

Philippe Bich Lecture 1: Sperner, Brouwer, Nash



Section 3. Proof of Brouwer’s theorem. b) Proof of
Brouwer when C homeomorphic to ∆n.

This is easy to prove that this theorem is true:

Brouwer Theorem
Every continuous mapping f : C → C, where C is
homeomorphic to ∆n, admits a fixed point, i.e. there exists
x ∈ C such that f (x) = x .

(EXERCISE 3:) Prove it, using the version of Brouwer proved
with Sperner’s Lemma.

Philippe Bich Lecture 1: Sperner, Brouwer, Nash



Section 3. Proof of Brouwer’s theorem. c)
Characterization of convex compact through
homeomorphism

Thus, to prove the version of Brouwer with C convex compact,
we will prove:

Characterization of compact convex subsets in finite
dimension
Every compact and convex subset C ⊂ Rn with a nonempty
interior is homeomorphic to B(0,1), the closed unit ball of Rn.

We will see later that the nonempty interior assumption is not
restrictive.
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Section 3. Proof of Brouwer’s theorem. d) Proof of the
previous characterization: definition of the jauge.

If C = {x ∈ Rn, ‖x‖ ≤ 1}, it is easy to prove that
∀x ∈ C, ‖x‖ = inf{λ > 0, x

λ ∈ C}. (EXERCISE 4:) Prove it.

Definition Let C ⊂ Rn such that 0 ∈int(C), we define p the
jauge of C as follows: ∀x ∈ Rn,p(x) = inf{λ > 0, x

λ ∈ C}.

Properties: If C compact convex and 0 ∈int C, one has:
(1) there is M > 0 such that ∀x ∈ E ,0 ≤ p(x) ≤ M‖x‖.
(EXERCISE 5:) Prove it.
(3) ∀t ≥ 0,p(tx) = tp(x); (EXERCISE 6:)
(4) ∀(x , y) ∈ E ,p(x + y) ≤ p(x) + p(y). (EXERCISE 7:)
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Section 3. Proof of Brouwer’s theorem. d) Proof of the
previous characterization.

Characterization of compact convex subsets in finite
dimension
Every compact and convex subset C ⊂ Rn such that 0 ∈ int(C)
is homeomorphic to B(0,1), the closed unit ball of Rn, the
homeomorphism can be taken as f : C → B(0,1) defined by
f (x) = p(x). x

‖x‖ , where p is the jauge of C.

(EXERCISE 8: proof).
Remark that if 0 /∈ int(C) but C has a nonempty interior one
can conclude similarly.
Remark that if C has an empty interior, one can consider a
smaller subspace which contains C in which C has a nonempty
interior, and we can conclude similarly, replacing n by a smaller
n.
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