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Section 1. Brouwer’s theorem

We have seen, from Sperner:

Brouwer Theorem (particular case)

Every continuous mapping f : A, — Ap, where Ap is a
n-simplex, admits a fixed point, i.e. there exists x € A, such
that f(x) = x.
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But it is true if one replaces A, by any compact convex subset
of RX (k > 0 given).
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Section 1. Brouwer’s theorem

We have seen, from Sperner:

Brouwer Theorem (particular case)

Every continuous mapping f : A, — Ap, where Ap is a
n-simplex, admits a fixed point, i.e. there exists x € A, such
that f(x) = x.

But it is true if one replaces A, by any compact convex subset
of RX (k > 0 given).

Brouwer Theorem (general version)

Every continuous mapping f : C — C, where C is a compact
convex subset of R¥ admits a fixed point, i.e. there exists x € C
such that f(x) = x.

We will prove this general theorem in this section.

Philippe Bich Lecture 1: Sperner, Brouwer, Nash



Section 1. Brouwer’s theorem

Philippe Bich Lecture 1: Sperner, Brouwer, Nash



Section 1. Brouwer’s theorem

Philippe Bich Lecture 1: Sperner, Brouwer, Nash



Section 1. Brouwer’s theorem

Philippe Bich Lecture 1: Sperner, Brouwer, Nash



Section 1. Brouwer’s theorem

@ If f is not continuous, may be false!
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@ If f is not continuous, may be false!
e if Cis not closed, may be false!
@ if C not bounded, may be false!
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Section 1. Brouwer’s theorem

@ If f is not continuous, may be false!
e if Cis not closed, may be false!
@ if C not bounded, may be false!
@ If Cis not convex, may be false!
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Section 2. Figure, by-products
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Section 2. Figure, by-products: a) Game theory

@ Brouwer’s theorem in game theory ? could be seen as
follows: C = Cq x C»... x C, where C; strategy space of
player i, ¢ = (cq, ..., Cn) is a profile of strategies for each
player, and f(c) = (fi(c), ..., fa(c)) where f;(c) is a strategy
of player i that is the best, given the strategies cq, ..., ¢, of
the others.
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of player i that is the best, given the strategies cq, ..., ¢, of
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@ Then a fixed-point f(c) = cis ... a Nash equilibrium.

@ Problem: in general, several optimal responses to other
strategies, not always possible to find one that moves
continuously with respect to the others.
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Section 2. Figure, by-products: a) Game theory

@ Brouwer’s theorem in game theory ? could be seen as
follows: C = Cq x C»... x C, where C; strategy space of
player i, ¢ = (cq, ..., Cn) is a profile of strategies for each
player, and f(c) = (fi(c), ..., fa(c)) where f;(c) is a strategy
of player i that is the best, given the strategies cq, ..., ¢, of
the others.

@ Then a fixed-point f(c) = cis ... a Nash equilibrium.

@ Problem: in general, several optimal responses to other
strategies, not always possible to find one that moves
continuously with respect to the others.

@ Example: C; = C, = [0, 1], payoff of player 1:
us(cr, c2) = ¢i(% — c2), payoff of player 2:

Ug(C1,Cg) = Cz(% — C1).
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Section 2. Figure, by-products: a) Game theory

@ Brouwer’s theorem in game theory ? could be seen as
follows: C = Cq x C»... x C, where C; strategy space of
player i, ¢ = (cq, ..., Cn) is a profile of strategies for each
player, and f(c) = (fi(c), ..., fa(c)) where f;(c) is a strategy
of player i that is the best, given the strategies cq, ..., ¢, of
the others.

@ Then a fixed-point f(c) = cis ... a Nash equilibrium.

@ Problem: in general, several optimal responses to other
strategies, not always possible to find one that moves
continuously with respect to the others.

@ Example: C; = C, = [0, 1], payoff of player 1:
us(cr, c2) = ¢i(% — c2), payoff of player 2:

Ug(C1,Cg) = Cz(% — C1).
@ We will see after a say to solve this "problem".
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Section 2. Figure, by-products: b) zero of inward
vector fields.

Definition

Let B the closed unit ball of R". Let f : B — R": we call it an
inward vector field if for every x € S = {x € B, ||x|| = 1} one
has < f(x),x >< 0.

VRSN |
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Section 2. Figure, by-products: b) zero of inward
vector fields.

Definition
Let B the closed unit ball of R”. Let f : B — IR": we call it an

inward vector field if for every x € S= {x € B, ||x|| = 1} one
has < f(x),x >< 0.

Theorem

Every continuous and inward vector field on B admits a zero,
i.e., there exists X € B such that f(x) = 0.

iéﬁ\“"f
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Section 2. Figure, by-products: c¢) General equilibrium.

@ The existence of a zero of an inward vector field can be easily applied
to the excess demand of an economy: ¢ = (¢q, ..., Cn) is a vector of
prices (where n goods), f(c) = (fi(c), ..., fa(c)) is the vector excess
demand (e.g., fi(c) > 0 means aggregate supply in good 1 is higher
than aggregate demand in this good.)
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prices (where n goods), f(c) = (fi(c), ..., fa(c)) is the vector excess
demand (e.g., fi(c) > 0 means aggregate supply in good 1 is higher
than aggregate demand in this good.)

@ if one wants to incorporates markets and time, a possibility is to add
some J x S matrix V in the excess demand: each columnj=1,....J
gives the payoffs of some assets in some differents states of nature
s=1,..., S tomorrow.
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@ The existence of a zero of an inward vector field can be easily applied
to the excess demand of an economy: ¢ = (¢q, ..., Cn) is a vector of
prices (where n goods), f(c) = (fi(c), ..., fa(c)) is the vector excess
demand (e.g., fi(c) > 0 means aggregate supply in good 1 is higher
than aggregate demand in this good.)

@ if one wants to incorporates markets and time, a possibility is to add
some J x S matrix V in the excess demand: each columnj=1,....J
gives the payoffs of some assets in some differents states of nature
s=1,..., S tomorrow.

@ In general, the returns depends on the prices of the economy, and we
require some extension of the previous theorem by allowing f depends
on p and Span V(p), the vector space spanned by V(p) (which
appears naturally in the budget set of consumers).
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Section 2. Figure, by-products: c¢) General equilibrium.

@ The existence of a zero of an inward vector field can be easily applied
to the excess demand of an economy: ¢ = (¢q, ..., Cn) is a vector of
prices (where n goods), f(c) = (fi(c), ..., fa(c)) is the vector excess
demand (e.g., fi(c) > 0 means aggregate supply in good 1 is higher
than aggregate demand in this good.)

@ if one wants to incorporates markets and time, a possibility is to add
some J x S matrix V in the excess demand: each columnj=1,....J
gives the payoffs of some assets in some differents states of nature
s=1,..., S tomorrow.

@ In general, the returns depends on the prices of the economy, and we
require some extension of the previous theorem by allowing f depends
on p and Span V(p), the vector space spanned by V(p) (which
appears naturally in the budget set of consumers).

@ Similarly, we need some extension of Brouwer solving the equation
p = f(p, SpanV(p)). But then discontinuities: See "An extension of
Brouwer’s fixed point theorem allowing discontinuities”, Philippe
Bich, Compte rendu a I’'académie des sciences 2004]
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Section 3. Proof of Brouwer’s theorem. a)

Homeorphism definition

In fact, Brouwer’s theorem is true if one replaces A, by any
subset C that is homeomorphic to Ap:
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Homeomorphic definition

A set C c R¥ is homeomorphic to another set D c R if there
exists a bijective mapping f from C to D such that f and f~1 are
continuous.

Philippe Bich Lecture 1: Sperner, Brouwer, Nash



Section 3. Proof of Brouwer’s theorem. a)

Homeorphism definition

In fact, Brouwer’s theorem is true if one replaces A, by any
subset C that is homeomorphic to Ap:

Homeomorphic definition

A set C c R¥ is homeomorphic to another set D c R if there
exists a bijective mapping f from C to D such that f and f~1 are
continuous.

(EXERCISE 1:) Prove thatin R, ]0,1[ and R are
homeomorphic. Prove that in R, all the closed balls are
homeomorphic.
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Section 3. Proof of Brouwer’s theorem. a)

Homeorphism definition

In fact, Brouwer’s theorem is true if one replaces A, by any
subset C that is homeomorphic to Ap:

Homeomorphic definition

A set C c R¥ is homeomorphic to another set D c R if there
exists a bijective mapping f from C to D such that f and f~1 are
continuous.

(EXERCISE 1:) Prove that in R, ]0,1[ and R are
homeomorphic. Prove that in R, all the closed balls are
homeomorphic.

(EXERCISE 2:) Prove that in R?, the unit circle and the unit ball
are not homeomorphic.
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Section 3. Proof of Brouwer’s theorem. b) Proof of

Brouwer when C homeomorphic to A,

This is easy to prove that this theorem is true:

Brouwer Theorem

Every continuous mapping f: C — C, where C is
homeomorphic to A, admits a fixed point, i.e. there exists
x € C such that f(x) = x.
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Section 3. Proof of Brouwer’s theorem. b) Proof of

Brouwer when C homeomorphic to A,

This is easy to prove that this theorem is true:

Brouwer Theorem

Every continuous mapping f: C — C, where C is
homeomorphic to A, admits a fixed point, i.e. there exists
x € C such that f(x) = x.

(EXERCISE 3:) Prove it, using the version of Brouwer proved
with Sperner’'s Lemma.
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Section 3. Proof of Brouwer’s theorem. c)
Characterization of convex compact through

homeomorphism

Thus, to prove the version of Brouwer with C convex compact,
we will prove:
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homeomorphism

Thus, to prove the version of Brouwer with C convex compact,
we will prove:

Characterization of compact convex subsets in finite

dimension

Every compact and convex subset C C R" with a nonempty
interior is homeomorphic to B(0, 1), the closed unit ball of R".

Philippe Bich Lecture 1: Sperner, Brouwer, Nash



Section 3. Proof of Brouwer’s theorem. c)
Characterization of convex compact through

homeomorphism

Thus, to prove the version of Brouwer with C convex compact,
we will prove:

Characterization of compact convex subsets in finite

dimension

Every compact and convex subset C C R" with a nonempty
interior is homeomorphic to B(0, 1), the closed unit ball of R".

We will see later that the nonempty interior assumption is not
restrictive.
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Section 3. Proof of Brouwer’s theorem. d) Proof of the

previous characterization: definition of the jauge.

e If C={x e R" x| <1}, itis easy to prove that
Vx € C, ||x]| = inf{X > 0, % € C}. (EXERCISE 4:) Prove it.
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o If C={xeR" x| <1},itis easy to prove that
Vx € C,||x|| = mf{)\ >0, % € C}. (EXERCISE 4:) Prove it.

Definition Let C C R" such that 0 €int(C), we define p the
jauge of C as follows: Vx € R, p(x) = inf{A > 0, € C}. }
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previous characterization: definition of the jauge.

o If C={xeR" x| <1},itis easy to prove that
Vx € C,||x|| = mf{)\ >0, % € C}. (EXERCISE 4:) Prove it.

Definition Let C C R" such that 0 €int(C), we define p the
jauge of C as follows: Vx € R, p(x) = inf{A > 0, € C}. }

@ Properties: If C compact convex and 0 cint C, one has:

@ (1) there is M > 0 such that Vx € E,0 < p(x) < M| x||.
(EXERCISE 5:) Prove it.
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Section 3. Proof of Brouwer’s theorem. d) Proof of the

previous characterization: definition of the jauge.

o If C={xeR" x| <1},itis easy to prove that
Vx € C,||x|| = mf{)\ >0, % € C}. (EXERCISE 4:) Prove it.

Definition Let C C R" such that 0 €int(C), we define p the
jauge of C as follows: Vx € R, p(x) = inf{A > 0, € C}. }

@ Properties: If C compact convex and 0 cint C, one has:

@ (1) there is M > 0 such that Vx € E,0 < p(x) < M| x||.
(EXERCISE 5:) Prove it.

@ (3)Vt > 0, p(tx) = tp(x); (EXERCISE 6)
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Section 3. Proof of Brouwer’s theorem. d) Proof of the

previous characterization: definition of the jauge.

o If C={xeR" x| <1},itis easy to prove that
Vx € C,||x|| = mf{)\ >0, % € C}. (EXERCISE 4:) Prove it.

Definition Let C C R" such that 0 €int(C), we define p the
jauge of C as follows: Vx € R, p(x) = inf{A > 0, € C}. }

@ Properties: If C compact convex and 0 cint C, one has:

@ (1) there is M > 0 such that Vx € E,0 < p(x) < M||x|.
EXERCISE 5:) Prove it.

(
@ (3) vt > 0, p(tx) = to(x); (EXERCISE 6:)
@ (4)V(x,y) € E,p(x +y) < p(x) + p(y). (EXERCISE 7:)

Philippe Bich Lecture 1: Sperner, Brouwer, Nash



Section 3. Proof of Brouwer’s theorem. d) Proof of the
previous characterization.

Characterization of compact convex subsets in finite
dimension

Every compact and convex subset C C R" such that 0 € int(C)
is homeomorphic to B(0, 1), the closed unit ball of R", the
homeomorphism can be taken as f : C — B(0, 1) defined by
f(x) = p(x).ﬁ, where p is the jauge of C.
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Section 3. Proof of Brouwer’s theorem. d) Proof of the
previous characterization.

Characterization of compact convex subsets in finite
dimension

Every compact and convex subset C C R" such that 0 € int(C)
is homeomorphic to B(0, 1), the closed unit ball of R", the
homeomorphism can be taken as f : C — B(0, 1) defined by
f(x) = p(x).ﬁ, where p is the jauge of C.

(EXERCISE 8: proof).
Remark that if 0 ¢ int(C) but C has a nonempty interior one
can conclude similarly.
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Section 3. Proof of Brouwer’s theorem. d) Proof of the
previous characterization.

Characterization of compact convex subsets in finite
dimension

Every compact and convex subset C C R" such that 0 € int(C)
is homeomorphic to B(0, 1), the closed unit ball of R", the
homeomorphism can be taken as f : C — B(0, 1) defined by
f(x) = p(x).ﬁ, where p is the jauge of C.

(EXERCISE 8: proof).

Remark that if 0 ¢ int(C) but C has a nonempty interior one
can conclude similarly.

Remark that if C has an empty interior, one can consider a
smaller subspace which contains C in which C has a nonempty
interior, and we can conclude similarly, replacing n by a smaller
n.
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